Comparative Ontogeny of Hermaphrodite and Pistillate Florets in Helianthus annuus L. (Asteraceae)
DOI:
https://doi.org/10.15835/nsb427576Abstract
The inflorescence of Helianthus annuus L. has two types of flowers (or florets) on a single capitulum; central hermaphrodite disc florets and peripheral pistillate ray florets. In both florets, reproductive development starts with the conversion of apical meristem into floral meristem that will produce floral organ primordia. The only difference between hermaphrodite and pistillate florets in apical meristem stage is that apical meristem of the pistillate florets is not as apparent and curvaceous as apical meristem of the hermaphrodite florets. The differentiation of apical meristem into floral meristem is in the same progress in both florets. In hermaphrodite florets, flower organs; petals, stamens and carpels develop from floral meristem. Differentiation of five petal primordia takes place in the same way in both florets. Firstly filament and then anther differentiates in a stamen. Two carpel primordia appear below the stamen primordia in hermaphrodite florets. In following stages, carpel primordia are lengthened and formed inferior ovary, style, stigma respectively. In pistillate florets, flower organs; petals and carpels develop from floral meristem. They pass directly from the periant initiation to the start of carpel formation. Stamen primordia don’t appear and the further development of carpel primordia stops in a short time, as a result, stigma and style do not exist in pistillate florets . However, an inferior ovary with no ovule forms. In the capitulum of hermaphrodite florets, t he development takes place in a centripetal manner ; it starts firstly on the outermost whorl, and it proceeds towards inner whorl. However, this is not the case in pistillate florets.
Metrics
Downloads
Published
How to Cite
Issue
Section
License
Papers published in Notulae Scientia Biologicae are Open-Access, distributed under the terms and conditions of the Creative Commons Attribution License.
© Articles by the authors; licensee SMTCT, Cluj-Napoca, Romania. The journal allows the author(s) to hold the copyright/to retain publishing rights without restriction.
License:
Open Access Journal - the journal offers free, immediate, and unrestricted access to peer-reviewed research and scholarly work, due SMTCT supports to increase the visibility, accessibility and reputation of the researchers, regardless of geography and their budgets. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author.