Cobalt oxide nanoparticles and their effect on melon (Cucumis melo L.) yield and quality
DOI:
https://doi.org/10.55779/nsb16412175Keywords:
bioactive compounds, cobalt nanoparticles, melon, productionAbstract
In melon (Cucumis melo L.) cultivation, there is very little evidence about the improvement of plants in the face of biotic and abiotic factors, photosynthetic metabolisms and crop productivity through fertilization and the addition of cobalt. The objective of our research was to demonstrate the effect of CO3 O4 NP's on growth, yield, fruit weight, TSS, firmness, cobalt content and bioactive compounds in melon fruits established in the open field. For this, a randomized complete block design was implemented with five treatments and control (0, 5, 10, 15, 20 and 25 mg L -1 of CO 3 O 4 NP's) and three replicates respectively. The use of CO3 O4 NP's at a dose of 20 mg L -1 increased the yield of the melon by 40% (42-ton ha -1), compared to the control which had a yield of 30 and 50-ton ha -1. As well as an increase in the weight of the fruits with the use of NP's in the highest doses by 9% compared to the control. On the other hand, there were no significant differences in the cobalt concentration in pulp and peel. Bioactive compounds increased up to 2% at a dose of 20 mg L -1. The firmness and soluble solids content of the fruit were not significantly affected. Results indicated that concentration 20 mg L -1 of NP's, provides higher antioxidant capacity and content bioactive compounds (anthocyanianins) show better performance under these experimental conditions. therefore, NP's are a viable option for improving the physicochemical properties the fruit.
Metrics
References
Agarwal H, Venkat-Kumar S, Rajeshkumar S (2017). A review on green synthesis of zinc oxide nanoparticles–An eco-friendly approach. Resource-Efficient Technologies 3(4):406-413. https://doi.org/10.1016/j.reffit.2017.03.002
Alavarsa-Cascales D, Aliaño-González MJ, Palma M, Barbero GF, Carrera C (2022). Optimization of an enzyme-assisted extraction method for the anthocyanins present in açai (Euterpe oleracea Mart.). Agronomy 12:2327.
Albalasmeh A, Berhe AA, Ghezzehei T (2013). A new method for rapid determination of carbohydrate and total carbon concentrations using UV spectrophotometry. Carbohydrate Polymers 97(2):253-261. https://doi.org/10.1016/j.carbpol.2013.04.072.
AOAC (1990). Official Methods and Analysis. 14th ed. Association of Official Analytical Chemists. Airlington, VA, EEUU. Pp 68.
Asokapandian S, Venkatachalam S, John G, Kuppusamy K (2015). Optimization of foaming properties and foam mat drying of muskmelon using soy protein. Journal of Food Process Engineering 39:692-701. https://doi.org/10.1111/jfpe.12261
Azam MM, Eissa AHA, Hassan AH (2015). Monitoring of change in cantaloupe fruit quality under pre-cooling and storage treatments. Journal of Food Processing & Technology 6(12):1-6. https://doi.org/10.4172/2157-7110.1000527
Briceño J, Tonato E, Silva M, Paredes M, Armado A (2020). Evaluación del contenido de metales en suelos y tejidos comestibles de Allium fistulosum L. cultivado en zonas cercanas al volcán Tungurahua. La Granja: Revista de Ciencias de la Vida 32(2):114-126. http://doi.org/10.17163/lgr.n32.2020.09
Bursać-Kovačević D, Putnik P, Dragović-Uzelac V, Vahčić N, Skendrović-Babojelić M, Levaj B (2015). Influences of organically and conventionally grown strawberry cultivars on anthocyanins content and color in purees and low-sugar jams. Food Chemistry 181:94-100. https://doi.org/10.1016/j.foodchem.2015.02.063
Camacho-Luis A, Gayosso-De Lucio JA, Torres-Valencia JM, Muñoz-Sánchez JL, Alarcón-Hernández E, López R, Barrón BL (2008). Antioxidant Constituents of Geranium bellum Rose. Journal of the Mexican Chemical Society. 52(2): 103-107. Retrieved 2024 June 10 from: http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1870-249X2008000200001&lng=es&tlng=.
Cano RP, Moreno LE, Espinoza JJ, Jiménez F, Nava U (1992). Guía para cultivar melón en la comarca lagunera. Campo Experimental ‘La Laguna’ de INIFAP. Matamoros, Coahuila. Pp 2-15.
Chandra P, Sharma RK, Arora DS (2020). Antioxidant compounds from microbial sources: a review. Food Research International 129. https://doi.org/10.1016/j.foodres.2019.108849
Díaz-Alvarado JM, Monge-Pérez JE, Loría-Coto M (2021). Melón (Cucumis melo L.) Honey Dew cultivado en invernadero: correlación entre densidad de siembra y variables de rendimiento. Revista Tecnología en Marzo 34(3):34-50. https://doi.org/10.18845/tm.v34i3.5033
FAO (2016). Food and Agriculture Organization. Retrieved 2024 April 20 from: http://faostat.fao.org/site/567/default.aspx#ancor
Farouk S, Al-Amri SM (2019). Exogenous zinc forms counteract NaCl-induced damage by regulating the antioxidant system, osmotic adjustment substances, and ions in canola (Brassica napus L. cv. Pactol) plants. Journal of Soil Science and Plant Nutrition 19(4):887-899. https://doi.org/10.1007/s42729-019-00087-y
Figueroa VU, Núñez HG, Sánchez JI, López HE (2015). Regional nitrogen balance in the milk-forage production system in the Comarca Lagunera, México. Revista Mexicana de Ciencias Pecuarias 6(4):377-392. https://doi.org/10.22319/rmcp.v6i4.4099
García-Cruz L, Valle-Guadarrama S, Soto-Hernández RM, Guerra-Ramírez D, Zuleta-Prada H, Martínez-Damián MT, Ramírez-Valencia YD (2021). Separation of pitaya (Stenocereus pruinosus) betaxanthins, betacyanins, and soluble phenols through multistage aqueous two-phase systems. Food and Bioprocess Technology 14:1791-1804. https://doi.org/10.1007/s11947-021-02676-1
Garcia-Mendoza V, Cano-Ríos P, Reyes-Carrillo JL (2019). Los híbridos de melón tipo Harper tienen una calidad y vida poscosecha mayor en comparación con los híbridos comerciales. Revista Chapingo. Serie Horticultura 25(3):185-197. https://doi.org/10.5154/r.rchsh.2019.05.008
González-García Y, Cárdenas-Álvarez C, Cadenas-Pliego G, Benavides-Mendoza A, Cabrera-de-la-Fuente M, Sandoval-Rangel A, Valdés-Reyna J, Juárez-Maldonado A (2021). Effect of three nanoparticles (Se, Si and Cu) on the bioactive compounds of bell pepper fruits under saline stress. Plants 10(2):217. https://doi.org/10.3390/plants10020217
Itagaki H (1994). Saccharification process of cellulose in 97 % sulfuric monitored by sulfuric acid induced ultraviolet absorption behaviour. Polymers 5(1):50-52. http://doi.org/10.1016/0032-3861(94)90048-5
Jahani M, Khavari-Nejad RA, Mahmoodzadeh H, Saadatmand S (2020). Effects of cobalt oxide nanoparticles (Co3O4 NPs) on ion leakage, total phenol, antioxidant enzymes activities and cobalt accumulation in Brassica napus L. Notulae Botanicae Horti Agrobotanici Cluj-Napoca. 48(3):1260-1275. https://doi.org/10.15835/nbha48311766
Joshi S, Kamble VB, Kumar M, Umarji AM, Srivastava G (2016). Efectos inducidos por sustitución de níquel en las propiedades de detección de gases de las nanopartículas de ferrita de cobalto. Revista de Aleaciones y Compuestos 654:460-466. https://doi.org/10.1016/J.JALLCOM.2015.09.119
Jurkow R, Pokluda R, Sękar A, Kalisz A (2020). Impact of foliar application of some metal nanoparticles on antioxidant system in oakleaf lettuce seedlings. BMC Plant Biology 20(290):1-12. https://doi.org/10.1186/s12870-020-02490-5
Kalra YP (1998). Handbook of reference methods for plant analysis. CRC Press, Boca Raton, FL.
López-Luna J, Camacho-Martínez MM, Solís-Domínguez FA, González-Chávez MC, Carrillo-González R, Martinez-Vargas S, Mijangos-Ricardez OF, Cuevas-Díaz MC (2018). Toxicity assess ment of cobalt ferrite nanoparticles on wheat plants. Journal of Toxicology and Environmental Health. Part A 81(14):604-619. https://doi.org/10.1080/15287394.2018.1469060
López-Moreno ML, Avilés LL, Pérez NG, Irizarry BÁ, Perales O, Cedeno-Mattei Y, Román F (2016). Effect of cobalt ferrite (CoFe2O4) nanoparticles on the growth and development of Lycopersicon lycopersicum (tomato plants). The Science of the Total Environment 550:45-52. https://doi.org/10.1016/j.scitotenv.2016.01.063
Ma C, Liu H, Guo H, Musante C, Coskun SH, Nelson BC, Dhankher OP (2016). Defense mechanisms and nutrient displacement in Arabidopsis thaliana upon exposure to CeO2 and In2O3 nanoparticles. Royal Society of Chemistry Journal Environmental Science: Nano 3(6):1369-1379. https://doi.org/10.1039/c6en00189k
Mallek-Ayadi S, Bahloul N, Kechaou N (2018). Chemical composition and bioactive compounds of Cucumis melo L. seeds: Potential source for new trends of plant oils. Process Safety and Environmental Protection 113:68-77. https://doi.org/10.1016/j.psep.2017.09.016
Monge-Pérez JE, Loría-Coto M (2017). Producción de melón en invernadero: comparación agronómica entre tipos de melón. Revista Posgrado y Sociedad 15(2):79-100. https://doi.org/10.22458/rpys.v15i2.1966
Mundo deportivo (2024). Cobalto: ¿por qué este metal es esencial para la vida? Nutrición. Consultado en: https://www.mundodeportivo.com/vidae/nutricion/20220127/1001742806/cobalto-metal-esencial-vida-act-pau.html
Óskarsson H, Stoops G, Garca-Rodeja E (2010). Soils of volcanic regions in Europe. Wageningen University and Research. https://doi.org/10.1007/978-3-540-48711-1
Pérez‐Hernández H, Fernández‐Luqueño F, Huerta‐Lwanga E, Mendoza‐Vega J, Álvarez‐Solís JD (2020). Effect of engineered nanoparticles on soil biota: ¿Do they improve the soil quality and crop production or jeopardize them? Land Degradation & Development 31(16):2213-2230. https://doi.org/10.1002/ldr.3595
Pérez-Hernández H, Pérez-Moreno A, Sarabia-Castillo CR, García-Mayagoitia S, Medina-Pérez G, López-Valdez F, … Fernández-Luqueño F (2021). Ecological drawbacks of nanomaterials produced on an industrial scale: collateral effect on human and environmental health. Water, Air, and Soil Pollution 232(10):435. https://doi.org/10.1007/s11270-021-05370-2
Re R, Pellegrini A, Proteggente A, Pannala M, Yang C, Rice-Evans N (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine 26:1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3.
Reche MJ (2007). Cultivo intensivo del melón. Hojas Divulgadoras-Ministerio de Agricultura, Pesca y Alimentación (España), (2125).
Repo de Carrasco R, y Encina ZCR (2008). Determinacion de la capacidad antioxidante y compuestos bioactivos de frutas nativas peruanas. Rev. Soc. Quim. Peru, Lima. 74(2):108-124. http://www.scielo.org.pe/scielo.php?script=sci_arttext&pid=S1810-634x2008000200004&Ing=es.
Reza S, Mohebbi M, Taghizadeh M (2017). Development of cantaloupe (Cucumis melo) pulp powder using foam mat drying method: Effects of drying conditions on microstructural of mat and physico-chemical properties of powder. Drying Technology 18:22. https://doi.org/10.1080/07373937.2017.1291518
Rivera-Gutiérrez RG, Preciado-Rangel P, Fortis-Hernández M, Betancourt-Galindo R, Yescas-Coronado P, Orozco-Vidal JA (2021). Nanoparticulas de óxido de zinc y su efecto en el rendimiento y calidad de melón. Revista Mexicana de Ciencias Agrícolas 12(5):791-803. https://doi.org/10.29312/remexca.v12i5.2987
Rodríguez-González V, Díaz-Cervantes E (2024). Potencial de los nanomateriales en la agricultura: retos y oportunidades. Mundo nano. Revista interdisciplinaria en nanociencias y nanotecnología, https://doi.org/10.22201/ceiich.24485691e.2024.32.69802
Rodríguez-Pérez C, Quirantes-Piné R, Fernández-Gutiérrez A, Segura Carretero A (2013). Comparative characterization of phenolic and other polar compounds in Spanish melon cultivars by using high performance liquid chromatography coupled to electrospray ionization quadrupole time of flight mass spectrometry. Food Research International 54(2):15191527. https://doi.org/10.1016/j.foodres.2013.09.011
Salama DM, Osman SA, Abd El-Aziz ME, Abd-Elwahed MS, Shaaban EA (2019). Effect of zinc oxide nanoparticles on the growth, genomic DNA, production and the quality of common dry bean (Phaseolus vulgaris). Biocatalysis and Agricultural Biotechnology18:101083. https://doi.org/10.1016/j.bcab.2019.101083
Solabomi-Olaitan O, Xinyan X, Lihui X, Yasmine A, Muhammad R, Luqiong Lv, … Bin L (2023). Cobalt oxide nanoparticles: An effective growth promoter of Arabidopsis plants and nano-pesticide against bacterial leaf blight pathogen in rice. Ecotoxicology and Environmental Safety 257:114935. https://doi.org/10.1016/j.ecoenv.2023.114935
Torres JM (1997). Los tipos de melón comerciales de Melones, España, Ediciones de Horticultura pp 13-20.
Trinidad S, Aguilar-Manjarrez D (1999). Fertilización foliar, un respaldo importante en el rendimiento de los cultivos. Terra Latinoamericana. 17(3):247-255. Retrieved 2024 June 27 from: https://www.redalyc.org/articulo.oa?id=57317309
Vargas PF, Castoldi R, De Oliveira-Charlo HC, Trevizan-Braz L (2008). Qualidade de melão rendilhado (Cucumis melo L.) em função do sistema de cultivo. Ciência e Agrotecnologia 32(1):137-142. https://doi.org/10.1590/S1413-70542008000100020
Vishwakarma VK, Gupta JK, Upadhyay PK (2017). Pharmacological importance of Cucumis melo L.: An overview. Asian Journal of Pharmaceutical and Clinical Research 10(3):8-12. https://doi.org/10.22159/ajpcr.2017.v10i3.13849
Vouldoukis I, Lacan D, Kamate C, Coste P, Calenda A, Mazier D, Conti M, Dugas B (2004). Antioxidant and anti-inflammatory properties of a Cucumis melo LC extract rich in superoxide dismutase activity. Journal of Ethnopharmacology 94(1):67-75. https://doi.org/10.1016/j.jep.2004.04.023
Wang M, Li, X, Hu J, Li J, Huang J (2015). El óxido nano-férrico promueve el crecimiento de la sandía. Rev. Biomateriales y Nanobiotecnología 6(3):160-167. https://doi.org/10.4236/jbnb. 2015.63016
Wang Y, Jiang F, Ma C, Rui Y, Tsang DCW, Xing B (2019). Efecto de nanopartículas de óxido metálico sobre aminoácidos en granos de trigo (Triticum aestivum) en un estudio de ciclo de vida. Journal of Environmental. Management 241:319-327. https://doi.org/10.1016/j.jenvman.2019.04.041
Zahedi SM, Moharrami F, Sarikhani S, Padervand M (2020). Selenium and silica nanostructure-based recovery of strawberry plants subjected to drought stress. Scientific Reports 10(1):1-18. https://doi.org/10.1038/s41598-020- 74273-9
Zanella R (2012). Metodologías para la síntesis de nanoparticulas: controlando forma y tamaño. Mundo nano. Revista Interdisciplinaria en Nanociencias y Nanotecnología 5(1):69-81.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Oscar SILVA-MARRUFO, Angie T. ORTEGA-RAMIREZ, Oscar G. ALANIZ-VILLANUEVA, Jaime HERRERA-GAMBOA, Rubén I. MARIN-TINOCO, Alejandro HURTADO-SALAZAR, Máyela GARCIA-ANDRADE

This work is licensed under a Creative Commons Attribution 4.0 International License.
Papers published in Notulae Scientia Biologicae are Open-Access, distributed under the terms and conditions of the Creative Commons Attribution License.
© Articles by the authors; licensee SMTCT, Cluj-Napoca, Romania. The journal allows the author(s) to hold the copyright/to retain publishing rights without restriction.
License:
Open Access Journal - the journal offers free, immediate, and unrestricted access to peer-reviewed research and scholarly work, due SMTCT supports to increase the visibility, accessibility and reputation of the researchers, regardless of geography and their budgets. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author.