Enhanced enzymatic and bioactive compounds in lettuce via zinc oxide nanoparticles

Authors

  • Pablo PRECIADO-RANGEL Doctorado en Ciencias en Agua y Suelo, Tecnológico Nacional de México/Instituto Tecnológico de Torreón, Carretera Torreón-San Pedro km 7.5, Ejido Ana, 27170, Torreón, Coahuila (MX)
  • Esteban SÁNCHEZ-CHÁVEZ Centro de Investigación en Alimentos y Desarrollo Delicias, Av. Cuarta Sur 3828, 33089 Delicias, Chihuahua (MX)
  • Manuel FORTIS-HERNÁNDEZ Doctorado en Ciencias en Agua y Suelo, Tecnológico Nacional de México/Instituto Tecnológico de Torreón, Carretera Torreón-San Pedro km 7.5, Ejido Ana, 27170, Torreón, Coahuila (MX)
  • Jazmín M. GAUCIN-DELGADO Universidad Politécnica de Gómez Palacio, Carretera El Vergel - La Terreña, Km 0+820. El Vergel, 35120, Gómez Palacio, Durango (MX)
  • Ramiro GONZÁLEZ AVALOS Universidad Autónoma Agraria Antonio Narro, Unidad Laguna, Periférico Raúl López Sánchez s/n. 27054, Torreón, Coahuila (MX)
  • Melisa C. HERMOSILLO-ALBA Universidad Autónoma Agraria Antonio Narro, Unidad Laguna, Periférico Raúl López Sánchez s/n. 27054, Torreón, Coahuila (MX)
  • Blanca P. PEÑA REVUELTA Universidad Autónoma Agraria Antonio Narro, Unidad Laguna, Periférico Raúl López Sánchez s/n. 27054, Torreón, Coahuila (MX)
  • Reyna R. GUILLÉN-ENRÍQUEZ Doctorado en Ciencias en Agua y Suelo, Tecnológico Nacional de México/Instituto Tecnológico de Torreón, Carretera Torreón-San Pedro km 7.5, Ejido Ana, 27170, Torreón, Coahuila (MX)

DOI:

https://doi.org/10.55779/nsb16412088

Keywords:

antioxidants, biofortification, biostimulation, Lactuca sativa, micronutrient, nanofertilizer

Abstract

Zinc (Zn) is a crucial micronutrient for living beings, yet the restricted availability of micronutrients in soil and the limited effectiveness of existing fertilizers often lead to deficiencies in crops, causing malnutrition in the population. Approximately 17.3% of the world's population suffers from health problems related to inadequate Zn intake. Nanobiofortification of crops is a strategy to mitigate this issue. The ‘Parris Island’ cultivar of lettuce (Lactuca sativa L.) was grown in 5-liter pots using a mixture of river sand and perlite (80:20 v/v) in a greenhouse environment. This study evaluated the effects of foliar application of zinc oxide nanoparticles (ZnO NPs) at concentrations of 0, 50, 75, and 100 mg L-1. ZnO NPs were applied four times at 15-day intervals. At 60 days post-transplantation, we assessed the fresh biomass, bioactive compound content, and bioaccumulation of Zn in lettuce. Results demonstrated that foliar spraying with 100 mg L-1 ZnO NPs enhanced Zn accumulation and the synthesis of bioactive compounds, thereby improving the nutritional profile of lettuce. Additionally, the 75 mg L-1 application increased fresh biomass by 103.23% compared to the control. This study provides compelling evidence of the potential of ZnO NPs as an effective nanofertilizer and biostimulant, presenting a promising approach to enhance Zn concentration and optimize antioxidant metabolism in lettuce plants.

Metrics

Metrics Loading ...

References

Bautista-Diaz J, Cruz-Alvarez O, Hernández-Rodríguez OA, Sánchez-Chávez E, Jacobo-Cuellar JL, Preciado-Rangel P, ... Ojeda-Barrios DL (2021). Zinc sulphate or zinc nanoparticle applications to leaves of green beans. Folia Horticulturae 33(2):365-375. https://doi.org/10.2478/fhort-2021-0028

Brand-Williams W (1995). Use of a free radical method to evaluate antioxidant activity. LWT 28:25-30. https://doi.org/10.1016/S0023-6438(95)80008-5

Brunetti C, Fini A, Sebastiani F, Gori A, Tattini M (2018). Modulation of phytohormone signaling: A primary function of flavonoids in plant–environment interactions. Frontiers in Plant Science 9:1042. https://doi.org/10.3389/fpls.2018.01042

Daccak D, Luís IC, Marques AC, Coelho ARF, Pessoa CC, Silva MM, ... Lidon FC (2021). A case study about the use of precision agriculture technology applied to a Zn biofortification workflow for grapevine Vitis vinifera cv Moscatel. In Biology and Life Sciences Forum 3(1):2. https://doi.org/10.3390/IECAG2021-09663

De Almeida HJ, Vergara Carmona VM, Ferreira Inocêncio M, Furtini Neto AE, Cecílio Filho AB, Mauad M (2020). Soil type and zinc doses in agronomic biofortification of lettuce genotypes. Agronomy 10(1):124. https://doi.org/10.3390/agronomy10010124

Dhindsa RS, Plumb-Dhindsa PAMELA, Thorpe TA (1981). Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. Journal of Experimental Botany 32(1):93-101. https://doi.org/10.1093/jxb/32.1.93

El-Nasr A, Mohamed K, El-Hennawy HM, Samaan MS, Salaheldin TA, El-Yazied A, El-Kereamy A (2021). Using zinc oxide nanoparticles to improve the color and berry quality of table grapes cv. Crimson Seedless. Plants 10(7):2223-7747. https://doi.org/10.3390/plants10071285

Fariduddin Q, Saleem M, Khan TA, Hayat S (2022). Zinc as a versatile element in plants: an overview on its uptake, translocation, assimilatory roles, deficiency and toxicity symptoms. Microbial Biofertilizers and Micronutrient Availability: The Role of Zinc in Agriculture and Human Health 137-158.

Flohé L, Gunzler WA, Schock HH (1973). Glutathione peroxidase: a selenoenzyme. FEBS Letters 32(1):132-134. https://doi.org/10.1016/0014-5793(73)80755-0

Fu Y, Li HY, Yu J, Liu H, Cao ZY, Manukovsky NS, Liu H (2017). Interaction effects of light intensity and nitrogen concentration on growth, photosynthetic characteristics and quality of lettuce (Lactuca sativa L. var. youmaicai). Scientia Horticulturae 214:51-57. https://doi.org/10.1016/j.scienta.2016.11.020.

García-López JI, Niño-Medina G, Olivares-Sáenz E, Lira-Saldivar RH, Barriga-Castro ED, Vázquez-Alvarado R, Rodríguez-Salinas PA, Zavala-García F (2019). Foliar application of zinc oxide nanoparticles and zinc sulfate boosts the content of bioactive compounds in habanero peppers. Plants 8(8):254. https://doi.org/10.3390/plants8080254

Guillén-Enríquez RR, Zuñiga-Estrada L, Ojeda-Barrios DL, Rivas-García T, Trejo-Valencia R, Preciado-Rangel P (2022). Efecto de la nanobiofortificación con hierro en el rendimiento y compuestos bioactivos en pepino. Revista Mexicana de Ciencias Agrícolas 13(18):173-184.

Hafizi Z (2018). The effect of zinc oxide nanoparticles on safflower plant growth and physiology. Engineering, Technology & Applied Science Research 8(1):2508-2513.

Hernández-Hernández H, Quiterio-Gutiérrez T, Cadenas-Pliego G, Ortega-Ortiz H, Hernández-Fuentes AD, Cabrera de la Fuente M, ... Juárez-Maldonado A (2019). Impact of selenium and copper nanoparticles on yield, antioxidant system, and fruit quality of tomato plants. Plants 8(10):355. https://doi.org/10.3390/plants8100355

Hou M, Zhang H, Shaghaleh H, Chen J, Zhong F, Hamoud YA, Zhu L (2024). Optimization of a lower irrigation limit for lettuce based on comprehensive evaluation: A field experiment. Plants 13(6):853. https://doi.org/10.3390/plants13060853

Iziy E, Majd A, Vaezi-Kakhki MR, Nejadsattari T, Noureini SK (2019). Effects of zinc oxide nanoparticles on enzymatic and nonenzymatic antioxidant content, germination, and biochemical and ultrastructural cell characteristics of Portulaca oleracea L. Acta Societatis Botanicorum Poloniae 88(4):3639. https://doi.org/10.5586/asbp.3639

Kumar UJ, Bahadur V, Prasad VM, Mishra S, Shukla PK (2017). Effect of different concentrations of iron oxide and zinc oxide nanoparticles on growth and yield of strawberry (Fragaria x ananassa Duch) cv. Chandler. International Journal of Current Microbiology and Applied Sciences 6(8):2440-2445. https://doi.org/10.20546/ijcmas.2017.604.288

Liu Z, Meng J, Sun Z, Su J, Luo X, Song J, ... Peng X (2022). Zinc application after low temperature stress promoted rice tillers recovery: Aspects of nutrient absorption and plant hormone regulation. Plant Science 314:111104. https://doi.org/10.1016/j.plantsci.2021.111104

López-Morales D, De La Cruz-Lázaro E, Sánchez-Chávez E, Preciado-Rangel P, Márquez-Quiroz C, Osorio-Osorio R (2020). Impact of agronomic biofortification with zinc on the nutrient content, bioactive compounds, and antioxidant capacity of cowpea bean (Vigna unguiculata L. Walpers). Agronomy 10(10):1460. https://doi.org/10.3390/agronomy10101460

Mahmoud A, Rania M, Hanafy S (2022). Foliar spray of biosynthesized zinc oxide nanoparticles alleviate salinity stress effect on Vicia faba plants. Journal of Soil Science and Plant Nutrition 2647-2662. https://doi.org/10.1007/s42729-022-00833-9

Mosa KA, El-Naggar M, Ramamoorthy K, Alawadhi H, Elnaggar A, Wartanian S, ... Hani H (2018). Copper nanoparticles induced genotoxicty, oxidative stress, and changes in superoxide dismutase (SOD) gene expression in cucumber (Cucumis sativus) plants. Frontiers in Plant Science 9:872. https://doi.org/10.3389/fpls.2018.00872

Ordóñez-Santos LE, Martínez-Girón J, Arias-Jaramillo ME (2017). Effect of ultrasound treatment on visual color, vitamin C, total phenols, and carotenoids content in Cape gooseberry juice. Food Chemistry 233:96-100. https://doi.org/10.1016/j.foodchem.2017.04.114

Palacio-Márquez A, Ramírez-Estrada CA, Gutiérrez-Ruelas NJ, Sánchez E, Ojeda-Barrios DL, Chávez-Mendoza C, Sida-Arreola JP (2021). Efficiency of foliar application of zinc oxide nanoparticles versus zinc nitrate complexed with chitosan on nitrogen assimilation, photosynthetic activity, and production of green beans (Phaseolus vulgaris L.). Scientia Horticulturae 288:110297. https://doi.org/10.1016/j.scienta.2021.110297

Pinedo-Guerrero ZH, Hernández-Fuentes AD, Ortega-Ortiz H, Benavides-Mendoza A, Cadenas-Pliego G, Juárez-Maldonado A (2017). Cu nanoparticles in hydrogels of chitosan-PVA affects the characteristics of post-harvest and bioactive compounds of jalapeño pepper. Molecules 22(6):926. https://doi.org/10.3390/molecules22060926

Preciado-Rangel P, Campos-Ortiz A, Chávez ES, Reyes-Gonzalez A, Ruiz-Espinoza F, Ojeda-Barrios D, Hernandez-Montiel L (2021). Zinc biofortification improves yield, nutraceutical quality and antioxidant capacity in lettuce. Tropical and Subtropical Agroecosystems 24(3). http://dx.doi.org/10.56369/tsaes.3844

Rivera-Gutiérrez RG, Preciado-Rangel P, Fortis-Hernández M, Betancourt-Galindo R, Yescas-Coronado P, Orozco-Vidal JA (2021). Zinc oxide nanoparticles and their effect on melon yield and quality. Revista Mexicana de Ciencias Agrícolas 12(5):791-803. https://doi.org/10.29312/remexca.v12i5.2987

Rossi L, Fedenia LN, Sharifan H, Ma X, Lombardini L (2019). Effects of foliar application of zinc sulfate and zinc nanoparticles in coffee (Coffea arabica L.) plants. Plant Physiology and Biochemistry 135:160-166. https://doi.org/10.1016/j.plaphy.2018.12.005

Salama DM, Osman SA, Abd El-Aziz ME, Abd Elwahed MS, Shaaban EA (2019). Effect of zinc oxide nanoparticles on the growth, genomic DNA, production and the quality of common dry bean (Phaseolus vulgaris). Biocatalysis and Agricultural Biotechnology 18:101083. https://doi.org/10.1016/j.bcab.2019.101083

Sida AJP, Sánchez E, Ojeda BDL, Ávila QGD, Flores CMA, Márquez QC, Preciado RP (2017). Can biofortification of zinc improve the antioxidant capacity and nutritional quality of beans? Emirates Journal of Food and Agriculture 29(3):237-241.

Singleton VL, Orthofer R, Lamuela-Raventós RM (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods in Enzymology 299:152-178. https://doi.org/10.1016/S0076-6879(99)99017-1

Solanki M (2021). The Zn as a vital micronutrient in plants. Journal of Microbiology, Biotechnology and Food Sciences, 11(3):e4026-e4026.

Song Y, Jiang M, Zhang H, Li R (2021). Zinc oxide nanoparticles alleviate chilling stress in rice (Oryza sativa L.) by regulating antioxidative system and chilling response transcription factors. Molecules 26(8):2196. https://doi.org/10.3390/molecules26082196

Steiner AAA (1961). Universal method for preparing nutrient solutions of a certain desired composition. Plant Soil 15:134-154

Suganya A, Saravanan A, Manivannan N (2020). Role of zinc nutrition for increasing zinc availability, uptake, yield, and quality of maize (Zea mays L.) grains: An overview. Communications in Soil Science and Plant Analysis 51(15):2001-2021. https://doi.org/10.1080/00103624.2020.1820030

Verma S, Chakdar H, Kumar M, Varma A, Saxena AK (2021). Microorganisms as a sustainable alternative to traditional biofortification of iron and zinc:status and prospect to combat hidden hunger. Journal of Soil Science and Plant Nutrition 21:1700-1717. https://doi.org/10.1007/s42729-021-00473-5

Wang XP, Li QQ, Pei ZM, Wang SC (2018). Effects of zinc oxide nanoparticles on the growth, photosynthetic traits, and antioxidative enzymes in tomato plants. Biologia Plantarum 62(4):801-808. https://doi.org/10.1007/s10535-018-0813-4

Yusefi TE, Fallah S, Rostamnejadi A, Pokhrel LR (2020). Zinc oxide nanoparticles (ZnONPs) as a novel nanofertilizer: influence on seed yield and antioxidant defense system in soil grown soybean (Glycine max cv. Kowsar). Science of The Total Environment 738(1):140240-140259. https://doi.org/10.1016/j.scitotenv.2020.140240

Zahedi SM, Moharrami F, Sarikhani S, Padervand M (2020). Selenium and silica nanostructure-based recovery of strawberry plants subjected to drought stress. Scientific Reports 10(1):17672. https://doi.org/10.1038/s41598-020-74273-9

Zhang H, Wang R, Chen Z, Cui P, Lu H, Yang Y, Zhang H (2021). The effect of zinc oxide nanoparticles for enhancing rice (Oryza sativa L.) yield and quality. Agriculture 11(12):1247. https://doi.org/10.3390/agriculture11121247

Downloads

Published

2024-12-04

How to Cite

PRECIADO-RANGEL, P., SÁNCHEZ-CHÁVEZ, E., FORTIS-HERNÁNDEZ, M., GAUCIN-DELGADO, J. M., GONZÁLEZ AVALOS, R., HERMOSILLO-ALBA, M. C., PEÑA REVUELTA, B. P., & GUILLÉN-ENRÍQUEZ, R. R. (2024). Enhanced enzymatic and bioactive compounds in lettuce via zinc oxide nanoparticles. Notulae Scientia Biologicae, 16(4), 12088. https://doi.org/10.55779/nsb16412088

Issue

Section

Research articles
CITATION
DOI: 10.55779/nsb16412088

Most read articles by the same author(s)