Exogenous nitric oxide and hydrogen sulfide as biotechnological tools for enhancing plant adaptation to cold
DOI:
https://doi.org/10.55779/nsb16312064Keywords:
cold stress, gasotransmitters, plant stress protective systems, ost-translational modification of proteins, signal transductionAbstract
The challenge of increasing plant tolerance to low temperatures is still relevant despite the upward trend in the average temperatures on Earth. Sharp temperature fluctuations during growing periods and cultivation of thermophilic crops in more northern latitudes increase the likelihood of plants being damaged by cold. Physiologically active substances, primarily hormones and signalling molecules, are considered to be effective for increasing plant tolerance to extreme temperatures. In the last decade, among such compounds, researchers' and practitioners' considerable attention has been paid to gasotransmitters – gaseous substances that are synthesized by living organisms and perform signalling functions. The review analyses the molecular mechanisms of stress protective effects of two major gasotransmitters – nitric oxide (NO) and hydrogen sulfide (H2S). In particular, the physiological effects of gasotransmitters that are attributed to their ability to cause post-translational modifications of numerous target proteins as well as those related to their functional interactions with other signaling intermediaries, primarily ROS and calcium ions, are discussed. The available data on the actions of donors of these gasotransmitters on thermophilic and cold-tolerant plants are summarized. Particular attention is paid to the influence of exogenous NO and H2S on the antioxidant system in plants, their ability to accumulate osmolytes and other low-molecular compounds with multifunctional stress protective effects. Data on the influence of gasotransmitters on fruits during low-temperature storage are analysed separately. It is emphasized that increased storability of fruits under the influence of NO and H2S donors is largely controlled by the ability of both gasotransmitters to inhibit ethylene synthesis. It was concluded that exogenous nitric oxide and hydrogen sulfide could be effective tools for increasing tolerance of different plant taxon’s to low temperatures and used in crop production and storage technologies for fruits and vegetables.
Metrics
References
Aghdam MS, Mahmoudi R, Razavi F, Rabiei V, Soleimani A (2018). Hydrogen sulfide treatment confers chilling tolerance in hawthorn fruit during cold storage by triggering endogenous H2S accumulation, enhancing antioxidant enzymes activity and promoting phenols accumulation. Scientia Horticulturae 238:264-271. https://doi.org/10.1016/j.scienta.2018.04.063
Ahmad MA, Prakash P, Singh HB (2018). Role of SNP-Mediated nitric oxide priming in conferring low temperature tolerance in wheat genotype (Triticum aestivum L.): A case study in Indian northern plains. In: Rakshit A, Singh H (Eds). Advances in Seed Priming. Springer, Singapore pp 289-295. https://doi.org/10.1007/978-981-13-0032-5_15
Ahmadi Soleimanie S, Vafaee Y, Koushesh Saba M (2019). Preharvest application of sodium nitroprusside improves tomato fruit quality and alleviates chilling injury during cold storage. International Journal of Vegetable Science 26(4):364-378. https://doi.org/10.1080/19315260.2019.1636444
Alcázar R, Cuevas JC, Planas J, Zarza X, Bortolotti C, Carrasco P, Salinas J, Tiburcio AF, Altabella T (2011). Integration of polyamines in the cold acclimation response. Plant Science 180(1):31-38. https://doi.org/10.1016/j.plantsci.2010.07.022
Almadanim MC, Alexandre BM, Rosa MTG, Sapeta H, Leitão AE, Ramalho JC, Lam TT, Negrão S, Abreu IA, Oliveira MM (2017). Rice calcium-dependent protein kinase OsCPK17 targets plasma membrane intrinsic protein and sucrose-phosphate synthase and is required for a proper cold stress response. Plant, Cell and Environment 40:1197-1213. https://doi.org/10.1111/pce.12916
Alscher RG, Erturk N, Heath LS (2002). Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. Journal of Experimental Botany 53(372):1331-1341. https://doi.org/10.1093/jexbot/53.372.1331
Amooaghaie R, Nikzad K (2013). The role of nitric oxide in priming-induced low-temperature tolerance in two genotypes of tomato. Seed Science Research 23(2):123-131. https://doi.org/10.1017/S0960258513000068
Antikainen M, Griffith M (1997). Antifreeze accumulation in freezing-tolerant cereals. Physiologia Plantarum 99(3):423-432. https://doi.org/10.1111/j.1399-3054.1997.tb00556.x
Aroca A, Benito JM, Gotor C, Romero LC (2017). Persulfidation proteome reveals the regulation of protein function by hydrogen sulfide in diverse biological processes in Arabidopsis. Journal of Experimental Botany 68(17):4915-4927. https://doi.org/10.1093/jxb/erx294
Aroca A, Gotor C, Romer, LC (2018). Hydrogen sulfide signaling in plants: emerging roles of protein persulfidation. Frontiers in Plant Science 9:1369. https://doi.org/10.3389/fpls.2018.01369
Aroca A, Zhang J, Xie Y, Romero LC, Gotor C (2021). Hydrogen sulfide signaling in plant adaptations to adverse conditions: molecular mechanisms. Journal of Experimental Botany 72(16):5893-5904. https://doi.org/10.1093/jxb/erab239
Arora D, Jain P, Singh N, Kaur H, Bhatla SC (2016). Mechanisms of nitric oxide crosstalk with reactive oxygen species scavenging enzymes during abiotic stress tolerance in plants. Free Radical Research 50(3):291-303. https://doi.org/10.3109/10715762.2015.1118473
Attri SD (2020). Climate services for managing climate change impacts on agriculture. In: Venkatramanan V, Shah S, Prasad R (Eds). Global Climate Change: Resilient and Smart Agriculture. Springer, Singapore pp 301-314. https://doi.org/10.1007/978-981-32-9856-9_14
Bai X, Yang L, Tian M, Chen J, Shi J, Yang Y, Hu X (2011). Nitric oxide enhances desiccation tolerance of recalcitrant Antiaris toxicaria seeds via protein S-nitrosylation and carbonylation. PLoS One 6(6):e20714. https://doi.org/10.1371/journal.pone.0020714
Banerjee A, Roychoudhury A (2021). Roles of hydrogen sulfide in regulating temperature stress response in plants. In: Aftab T, Hakeem KR (Eds). Plant Growth Regulators. Springer, Cham. pp 207-215. https://doi.org/10.1007/978-3-030-61153-8_10
Bates JN, Baker MT, Guerra JrR, Harrison DG (1991). Nitric oxide generation from nitroprusside by vascular tissue: evidence that reduction of the nitroprusside anion and cyanide loss are required. Biochemical Pharmacology 42:S157-S165. https://doi.org/10.1016/0006-2952(91)90406-u
Baudouin E, Jeandroz, S (2015). Nitric oxide as a mediator of cold stress response: a transcriptional point of view. In: Khan M, Mobin M, Mohammad F, Corpas F (Eds). Nitric Oxide Action in Abiotic Stress Responses in Plants. Springer, Switzerland pp 129-139. https://doi.org/10.1007/978-3-319-17804-2_8
Bernfur K, Rutsdottir G, Emanuelsson C (2017). The chloroplast-localized small heat shock protein Hsp21 associates with the thylakoid membranes in heat-stressed plants. Protein Science 26:1773-1784. https://doi.org/10.1002/pro.3213
Bilyavska NO, Fediuk OM, Zolotareva EK (2019). Chloroplasts of cold-tolerant plants. Plant Science Today 6(4):407-411. https://doi.org/10.14719/pst.2019.6.4.584
Blume YB, Krasylenko YA, Demchuk OM, Yemets AI (2013). Tubulin tyrosine nitration regulates microtubule organization in plant cells. Frontiers in Plant Science 4:530. https://doi.org/10.3389/fpls.2013.00530
Buet A, Steelheart C, Perini MA, Galatro A, Simontacchi M, Grozef GEG (2021). Nitric oxide as a key gasotransmitter in fruit post-harvest: An overview. Journal of Plant Growth Regulation 40:2286-2302. https://doi.org/10.1007/s00344-021-10428-w
Byun MY, Lee J, Cui LH, Kang Y, Oh TK, Park H, Li H, Kim WT (2015). Constitutive expression of DaCBF7, an Antarctic vascular plant Deschampsia antarctica CBF homolog, resulted in improved cold tolerance in transgenic rice plants. Plant Science 236:61-74. https://doi.org/10.1016/j.plantsci.2015.03.020
Cantrel C, Vazquez T, Puyaubert J, Rezé N, Lesch M, Kaiser WM, Dutilleul C, Guillas I, Zachowski A, Baudouin E (2011). Nitric oxide participates in cold-responsive phosphosphingolipid formation and gene expression in Arabidopsis thaliana. New Phytologist 189:415-427. https://doi.org/10.1111/j.1469-8137.2010.03500.x
Carter JM, Brown EM, Irish EE, Bowden NB (2019). Characterization of dialkyldithiophosphates as slow hydrogen sulfide releasing chemicals and their effect on the growth of maize. Journal of Agricultural and Food Chemistry 67(43):11883-11892. https://doi.org/10.1021/acs.jafc.9b04398
Chaki M, Valderrama R, Fernandez-Ocana AM, Carreras A, Gomez-Rodriguez MV, Pedrajas JR, … Barroso JB (2011). Mechanical wounding induces a nitrosative stress by down-regulation of GSNO reductase and an increase in S-nitrosothiols in sunflower (Helianthus annuus) seedlings. Journal of Experimental Botany 62:1803-1813. https://doi.org/10.1093/jxb/erq358
Chakraborty S, Jana B (2018). Antifreeze proteins: an unusual tale of structural evolution, hydration and function. Proceedings of the Indian National Science Academy 100:169-187. https://doi.org/10.16943/ptinsa/2018/49553
Chen Y, Jiang J, Chang Q, Gu C, Song A, Chen S, Dong B, Chen F (2014). Cold acclimation induces freezing tolerance via antioxidative enzymes, proline metabolism and gene expression changes in two chrysanthemum species. Molecular Biology Reports 41:815-822. https://doi.org/10.1007/s11033-013-2921-8
Chen ZY, Wang YT, Pan XB, Xi ZM (2019). Amelioration of cold-induced oxidative stress by exogenous 24-epibrassinolide treatment in grapevine seedlings: toward regulating the ascorbate–glutathione cycle. Scientia Horticulturae 244:379-387. https://doi.org/10.1016/j.scienta.2018.09.062
Chen X, Ding Y, Yang Y, Song C, Wang B, Yang S, Guo Y, Gong Z (2021). Protein kinases in plant responses to drought, salt, and cold stress. Journal of Integrative Plant Biology 63(1):53-78. https://doi.org/10.1111/jipb.13061
Chervenkov H, Slavov K (2022). Inter-annual variability and trends of the frost-free season characteristics over Central and Southeast Europe in 1950-2019. Journal of Central European Agriculture 23(1):154-164. https://doi.org/10.5513/JCEA01/23.1.3394
Chinnusamy V, Zhu J, Zhu JK (2007). Cold stress regulation of gene expression in plants. Trends Plant Science 12:444-451. https://doi.org/10.1016/j.tplants.2007.07.002
Chmielowska-Bak J, Izbianska K, Deckert J (2015). Products of lipid, protein and RNA oxidation as signals and regulators of gene expression in plants. Frontiers in Plant Science 6:405. https://doi.org/10.3389/fpls.2015.00405
Choudhury FK, Rivero RM, Blumwald E, Mittler R (2017). Reactive oxygen species, abiotic stress and stress combination. The Plant Journal 90(5):856-867. https://doi.org/10.1111/tpj.13299
Choudhary S, Wani KI, Naeem M, Khan MMA, Aftab T (2023). Cellular responses, osmotic adjustments, and role of osmolytes in providing salt stress resilience in higher plants: polyamines and nitric oxide crosstalk. Journal of Plant Growth Regulation 42(2), 539-553. https://doi.org/10.1007/s00344-022-10584-7
Corpas FJ, Barroso JB, González-Gordo S, Muñoz-Vargas MA, Palma JM (2019). Hydrogen sulfide: A novel component in Arabidopsis peroxisomes which triggers catalase inhibition. Journal of Integrative Plant Biology 61(7):871-883. https://doi.org/10.1111/jipb.12779
Corpas FJ, González-Gordo S, Palma JM (2021). Nitric oxide and hydrogen sulfide modulate the NADPH-generating enzymatic system in higher plants. Journal of Experimental Botany 72(3):830-847. https://doi.org/10.1093/jxb/eraa440
Corpas FJ, Muñoz-Vargas MA, González-Gordo S, Rodríguez Ruiz M, Palma JM (2023). Nitric oxide (NO) and hydrogen sulfide (H2S): New potential biotechnological tools for postharvest storage of horticultural crops. Journal of Plant Growth Regulation. https://doi.org/10.1007/s00344-023-11150-5
Corpas F.J, Barroso JB (2017). Nitric oxide synthase-like activity in higher plants. Nitric Oxide 68:6. https://doi.org/10.1016/j.niox.2016.10.009
Corpas FJ, Palma JM (2020). H2S signaling in plants and applications in agriculture. Journal of Advanced Research 24:131-137. https://doi.org/10.1016/j.jare.2020.03.011
Corpas FJ, Palma JM (2024). History of what has been learned since the discovery of H2S in plants. In: Modolo LV, Da-Silva CJ (Eds). H2S in Plants. Past, Present and Beyond. Elsevier Inc, pp 1-22. https://doi.org/10.1016/B978-0-323-99035-6.00002-6
Correa-Aragunde N, Foresi N, Lamattina L (2015). Nitric oxide is a ubiquitous signal for maintaining redox balance in plant cells: regulation of ascorbate peroxidase as a case study. Journal of Experimental Botany 66(10):2913-2921. doi: 10.1093/jxb/erv073
Cuevasanta E, Lange M, Bonanata J, Coitiño EL, Ferrer-Sueta G, Filipovic MR, Alvarez B. (2015). Reaction of hydrogen sulfide with disulfide and sulfenic acid to form the strongly nucleophilic persulfide. Journal of Biological Chemistry 290:26866-26880. https://doi.org/10.1074/jbc.M115.672816
Dabravolski SA, Isayenkov SV (2023). The role of anthocyanins in plant tolerance to drought and salt stresses. Plants 12:2558. https://doi.org/10.3390/plants1213255
Dar AA, Choudhury AR, Kancharla PK, Arumugam N (2017). The FAD2 gene in plants: occurrence, regulation, and role. Frontiers in Plant Science 8:1789. https://doi.org/10.3389/fpls.2017.01789
Debaeke P, Casadebaig P, Langlade NB (2021). New challenges for sunflower ideotyping in changing environments and more ecological cropping systems. OCL 28:29. https://doi.org/10.1051/ocl/2021016
Dhiman S, Ibrahim M, Khanna K, Bhardwaj T, Devi K, Sharma I, … Bhardwaj R (2023). Cross-talk between ROS, RNS, RCS, and RSS in plants under abiotic stresses. In: Khan MIR, Iqbal N, Poor P, Ferrante A (Eds). Nitric Oxide in Developing Plant Stress Resilience. Academic Press pp 305-326. https://doi.org/10.1016/B978-0-323-91209-9.00016-6
Diao Q, Song Y, Shi D, Qi H (2017). Interaction of polyamines, abscisic acid, nitric oxide, and hydrogen peroxide under chilling stress in tomato (Lycopersicon esculentum Mill.) seedlings. Frontiers in Plant Science 8:203. https://doi.org/10.3389/fpls.2017.00203
Diao Q, Cao Y, Fan H, Zhang Y (2020). Transcriptome analysis deciphers the mechanisms of exogenous nitric oxide action on the response of melon leaves to chilling stress. Biologia Plantarum 64:465-472. https://doi.org/10.32615/bp.2020.021
Diniz MC, Olivon VC, Tavares LD, Simplicio JA, Gonzaga NA, de Souza DG, Bendhack LM, Tirapelli CR, Bonaventura D (2017). Mechanisms underlying sodium nitroprusside-induced tolerance in the mouse aorta: Role of ROS and cyclooxygenase-derived prostanoids. Life Sciences 176:26-34. https://doi.org/10.1016/j.lfs.2017.03.016
Du X, Jin Z, Liu D, Yang G, Pei Y (2017). Hydrogen sulfide alleviates the cold stress through MPK4 in Arabidopsis thaliana. Plant Physiology and Biochemistry 120:112-119. https://doi.org/10.1016/j.plaphy.2017.09.028
El-Beltagi HS, Ahmed OK, Hegazy AE (2016). Protective effect of nitric oxide on high temperature induced oxidative stress in wheat (Triticum aestivum) callus culture. Notulae Scientia Biologicae 8(2):192-198. https://doi.org/10.15835/nsb829807
Esim N, Atici O, Mutlu S (2012). Effects of exogenous nitric oxide in wheat seedlings under chilling stress. Toxicology and Industrial Health 30(3):268-274. https://doi.org/10.1177/0748233712457444
Esim N, Atici O (2014). Nitric oxide improves chilling tolerance of maize by affecting apoplastic antioxidative enzymes in leaves. Plant Growth Regulation 72:29-38. https://doi.org/10.1007/s10725-013-9833-4
Esim N, Atici Ö (2015). Effects of exogenous nitric oxide and salicylic acid on chilling-induced oxidative stress in wheat (Triticum aestivum). Frontiers in Life Science 8(2):124-130. https://doi.org/10.1080/21553769.2014.998299
Fan J, Chen K, Amombo E, Hu Z, Chen L, Fu J (2015). Physiological and molecular mechanism of nitric oxide (NO) involved in bermudagrass response to cold stress. PLoS One 10(7):e0132991. https://doi.org/10.1371/journal.pone.0132991
Fancy NN, Bahlmann AK, Loake GJ (2017). Nitric oxide function in plant abiotic stress. Plant, Cell & Environment 40:462-72. https://doi.org/10.1111/pce.12707
Farnese FS, Menezes-Silva PE, Gusman GS, Oliveira JA (2016). When bad guys become good ones: the key role of reactive oxygen species and nitric oxide in the plant responses to abiotic stress. Frontiers in Plant Science 7:471. https://doi.org/10.3389/fpls.2016.00471
Feng L, Wei L, Liu Y, Ren J, Liao W (2023). Carbon monoxide/heme oxygenase system in plant: Roles in abiotic stress response and crosstalk with other signals molecules. Nitric Oxide 138-139:51-63. https://doi.org/10.1016/j.niox.2023.06.005
Feng Y, Fu X, Han L, Xu C, Liu C, Bi H, Ai X (2021). Nitric oxide functions as a downstream signal for melatonin-induced cold tolerance in cucumber seedlings. Frontiers in Plant Science 12:686545. https://doi.org/10.3389/fpls.2021.68654
Feng YX, Li CZ, Lin YJ, Yu XZ (2022). Involvement of b-cyanoalanine synthase (b-CAS) and sulfurtransferase (ST) in cyanide (CN) assimilation in rice seedlings. Chemosphere 294:133789 https://doi.org/10.1016/j.chemosphere.2022.133789
Fernandez O, Béthencourt L, Quero A, Sangwan RS, Clément C (2010). Trehalose and plant stress responses: friend or foe?. Trends in Plant Science 15(7):409-417. https://doi.org/10.1016/j.tplants.2010.04.004
Filipovic MR, Miljkovic JL, Nauser T, Royzen M, Klos K, Shubina T, … Ivanović-Burmazović I (2012). Chemical characterization of the smallest S-nitrosothiol, HSNO; cellular cross-talk of H2S and S-nitrosothiols. Journal of the American Chemical Society 134:12016-12027. https://doi.org/10.1021/ja3009693
Fox B, Schantz JT, Haigh R, Wood ME, Moore PK, Viner N, Spencer JP, Winyard PG, Whiteman M (2012). Inducible hydrogen sulfide synthesis in chondrocytes and mesenchymal progenitor cells: is H2S a novel cytoprotective mediator in the inflamed joint? Journal of Cellular and Molecular Medicine 16(4):896-910. https://doi.org/10.1111/j.1582-4934.2011.01357.x
Fu PN, Wang WJ, Hou LX, Liu X (2013). Hydrogen sulfide is involved in the chilling stress response in Vitis vinifera L. Acta Societatis Botanicorum Poloniae 82(4):295-302. https://doi.org/10.5586/asbp.2013.031
Gangola MP, Ramadoss BR (2018). Sugars play a critical role in abiotic stress tolerance in plants. In: Wani SH (Ed). Biochemical, Physiological and Molecular Avenues for Combating Abiotic Stress in Plants, Elsevier, Amsterdam pp 17-38. https://doi.org/10.1016/B978-0-12-813066-7.00002-4
García-Caparrós P, De Filippis L, Gul A, Hasanuzzaman M, Ozturk M, Altay V, Lao MT (2021). Oxidative stress and antioxidant metabolism under adverse environmental conditions: a review. The Botanical Review 87(4):421-466. https://doi.org/10.1007/s12229-020-09231-1
Gautam H, Khan S, Nidhi, Sofo A, Khan NA (2024). Appraisal of the role of gaseous signaling molecules in thermotolerance mechanisms in plants. Plants 13(6):791. https://doi.org/10.3390/plants13060791
Ghorbani B, Pakkish Z, Khezri M (2018). Nitric oxide increases antioxidant enzyme activity and reduces chilling injury in orange fruit during storage. New Zealand Journal of Crop and Horticultural Science 46(2):101-116. https://doi.org/10.1080/01140671.2017.1345764
Gross I, Durner J (2016). In search of enzymes with a role in 3’, 5’-cyclic guanosine monophosphate metabolism in plants. Frontiers in Plant Science 7:576. https://doi.org/10.3389/fpls.2016.00576
Grossi L, D'Angelo S (2005). Sodium nitroprusside: mechanism of NO release mediated by sulfhydryl-containing molecules. Journal of Medicinal Chemistry 48(7):2622-2626. https://doi.org/10.1021/jm049857n
Gruhlke MC (2019). Reactive sulfur species a new player in plant physiology? In: Hasanuzzaman M (Ed). Reactive Oxygen, Nitrogen and Sulfur Species in Plants: Production, Metabolism, Signaling and Defense Mechanisms, vol 2. John Wiley & Sons Ltd pp 715-728. https://doi.org/10.1002/9781119468677.ch31
Guo H, Xiao T, Zhou H, Xie Y, Shen W (2016). Hydrogen sulfide: A versatile regulator of environmental stress in plants. Acta Physiologiae Plantarum 38(1):16. http://dx.doi.org/10.1007/s11738-015-2038-x
Guo X, Liu D, Chong K (2018a). Cold signaling in plants: Insights into mechanisms and regulation. Journal of Integrative Plant Biology 60(9):745-756. https://doi.org/10.1111/jipb.12706
Guo Z, Liang Y, Yan J, Yang E, Li K, Xu H (2018b). Physiological response and transcription profiling analysis reveals the role of H2S in alleviating excess nitrate stress tolerance in tomato roots. Plant Physiology and Biochemistry 124:59-69. https://doi.org/10.1016/j.plaphy.2018.01.006
Gupta KJ, Kolbert Z, Durner, J, Lindermayr C, Corpas FJ, Brouquisse R, … Loake GJ (2020). Regulating the regulator: nitric oxide control of post‐translational modifications. New Phytologist 227:1319-1325. https://doi.org/10.1111/nph.16622
Gupta KJ, Fernie AR, Kaiser WM, Dongen JT (2011). On the origins of nitric oxide. Trends in Plant Science 16(3):160-168. https://doi.org/10.1016/j.tplants.2010.11.007
Gupta SK, Marwa N, Pandey AK, Zhang YB, Zhang JL (2021). Hydrogen sulfide homeostasis in plants: An overview. In: Hydrogen Sulfide in Plant Biology: Past and Present. Academic Press, Elsevier pp 341-363. https://doi.org/10.1016/b978-0-323-85862-5.00017-8
Gökdemir FŞ, Eyidoğan F (2024). The role of H2S in plant defense against pathogens and herbivores. In: Modolo LV, da-Silva CJ (Eds). H₂S in Plants Past, Present and Beyond. Academic Press, Elsevier pp 231-244. https://doi.org/10.1016/B978-0-323-99035-6.00006-3
Hancock JT, Whiteman M (2014). Hydrogen sulfide and cell signaling: Team player or referee? Plant Physiology and Biochemistry 78:37-42
Hancock JT, Neill SJ (2019). Nitric oxide: its generation and interactions with other reactive signaling compounds. Plants 8:41. https://doi.org/10.3390/plants8020041
Hancock JT, Veal D (2021). Nitric oxide, other reactive signalling compounds, redox, and reductive stress. Journal of Experimental Botany 72(3):819-829. https://doi.org/10.1093/jxb/eraa331
Hasanuzzaman M, Bhuyan MB, Nahar K, Mohsin SM, Al Mahmud J, Parvin K, Fujita M (2020a). Exogenous nitric oxide‐and hydrogen sulfide‐induced abiotic stress tolerance in plants. In: Roychoudhury A, Tripathi DK (Eds). Protective Chemical Agents in the Amelioration of Plant Abiotic Stress: Biochemical and Molecular Perspectives, John Wiley & Sons Ltd. pp 174-213. https://doi.org/10.1002/9781119552154.ch8
Hasanuzzaman M, Bhuyan MHMB, Zulfiqar F, Raza A, Mohsin SM, Mahmud JA, Fujita M, Fotopoulos V (2020b). Reactive oxygen species and antioxidant defense in plants under abiotic stress: revisiting the crucial role of a universal defense regulator. Antioxidants 9(8):681. https://doi.org/10.3390/antiox9080681
Horton A, Schiefer IT (2019). Pharmacokinetics and pharmacodynamics of nitric oxide mimetic agents. Nitric Oxide 84:69–78. https://doi.org/10.1016/j.niox.2019.01.001
Hottinger DG, Beebe DS, Kozhimannil T, Prielipp RC, Belani KG (2014). Sodium nitroprusside in 2014: A clinical concepts review. Journal of Anaesthesiology Clinical Pharmacology 30(4):462-71. https://doi.org/10.4103/0970-9185.142799
Hu J, Huang X, Chen L, Sun X, Lu C, Zhang L, Wang Y, Zuo J (2015). Site-specific nitrosoproteomic identification of endogenously S-nitrosylated proteins in Arabidopsis. Plant Physiology 167(4):1731-46. https://doi.org/10.1104/pp.15.00026
Hu Y, Jiang Y, Han X, Wang H, Pan J, Yu D (2017). Jasmonate regulates leaf senescence and tolerance to cold stress: crosstalk with other phytohormones Journal of Experimental Botany 68(6):1361-1369. https://doi.org/10.1093/jxb/erx004
Huang X, Shi H, Hu Z, Liu A, Amombo E, Chen L, Fu J (2017). ABA Is Involved in regulation of cold stress response in bermudagrass. Frontiers in Plant Science 8:1613. https://doi.org/10.3389/fpls.2017.01613
Iqbal Z, Memon AG, Ahmad A, Iqbal MS (2022). Calcium mediated cold acclimation in plants: underlying signaling and molecular mechanisms. Frontiers in Plant Science 13:855559. https://doi.org/10.3389/fpls.2022.855559
Jahed KR, Saini AK and Sherif SM (2023). Coping with the cold: unveiling cryoprotectants, molecular signaling pathways, and strategies for cold stress resilience. Frontiers in Plant Science 14:1246093. https://doi.org/10.3389/fpls.2023.1246093
Janda T, Szalai G, Leskó K, Yordanova R, Apostol S, Popova LP (2007). Factors contributing to enhanced freezing tolerance in wheat during frost hardening in the light. Phytochemistry 68(12):1674-1682. https://doi.org/10.1016/j.phytochem.2007.04.012
Janda T, Szalai G, Rios-Gonzalez K, Veisz O, Páldi E (2003). Comparative study of frost tolerance and antioxidant activity in cereals. Plant Science 164(2):301-306. https://doi.org/10.1016/S0168-9452(02)00414-4
Janicka MG, Reda MG, Czy Ewska K, Kaba AK (2018). Involvement of signalling molecules NO, H2O2 and H2S in modification of plasma membrane proton pump in cucumber roots subjected to salt or low temperature stress. Functional Plant Biology 45(4):428-439. https://doi.org/10.1071/FP17095
Janská A, Marsík P, Zelenková S, Ovesná J (2010). Cold stress and acclimation—what is important for metabolic adjustment?. Plant Biology 12(3):395-405. https://doi.org/10.1111/j.1438-8677.2009.00299.x
Jeandroz S, Wipf D, Stuehr DJ, Lamattina L, Melkonian M, Tian Z, Zhu Y, Carpenter EJ, Wong GK, Wendehenne D (2016). Occurrence, structure, and evolution of nitric oxide synthase-like proteins in the plant kingdom. Science Signaling 9:re2. https://doi.org/10.1126/scisignal.aad4403
Jedelská T, Sedlářová M, Lochman J, Činčalová L, Luhová L, Petřivalský M (2021). Protein S-nitrosation differentially modulates tomato responses to infection by hemi-biotrophic oomycetes of Phytophthora spp. Horticultural Research 8(1):34. https://doi.org/10.1038/s41438-021-00469-3
Jian LC, Li JH, Chen WP, Li PH, Ahlstrand GG (1999). Cytochemical localization of calcium and Ca2+-ATPase activity in plant cells under chilling stress: a comparative study between the chilling-sensitive maize and the chilling-insensitive winter wheat. Plant and Cell Physiology 40(10):1061-1071. https://doi.org/10.1093/oxfordjournals.pcp.a029488
Kang R, Zhang L, Jiang L, Yu M, Ma R, Yu Z (2016). Effect of postharvest nitric oxide treatment on the proteome of peach fruit during ripening. Postharvest Biology and Technology 112:277-289. https://doi.org/10.1016/j.postharvbio.2015.08.017
Karpets YV (2019). Donors of nitric oxide and their application for increase in plants resistance to action of abiotic stressors. Visnyk Harkivskogo Nacionalnogo Agrarnogo Universytetu, Seriya Biologiya 3(48):28-51. https://doi.org/10.35550/vbio2019.03.028
Karpets YV, Kolupaev YE, Lugovaya AA, Shvidenko NV, Yastreb TO (2018). Effects of nitrate and L-arginine on content of nitric oxide and activities of antioxidant enzymes in roots of wheat seedlings and their heat resistance. Russian Journal of Plant Physiology 65(6):908-915. https://doi.org/10.1134/S1021443718050096
Karpets YV, Kolupaev YE, Lugovaya AA, Shvidenko NV, Shkliarevskyi MA, Yastreb TO (2020). Functional interaction of ROS and nitric oxide during induction of heat resistance of wheat seedlings by hydrogen sulfide donor. Russian Journal of Plant Physiology 67(4):653-660. https://doi.org/10.1134/S1021443720030140
Kazemi-Shahandashti S-S, Maali-Amiri R (2018). Global insights of protein responses to cold stress in plants: Signaling, defence, and degradation. Journal of Plant Physiology 226:123-135. https://doi.org/10.1016/j.jplph.2018.03.022
Kernasyuk Y (2021). Global climate crisis and its impact on the development of the agricultural sector of the Ukrainian economy. Ekonomika APK 28(9):91-101. https://doi.org/10.32317/2221-1055.202109091
Khan NM, Siddiqui ZH, Naeem M, Abbas ZK, Ansari MW (2022). Nitric oxide and hydrogen sulfide interactions in plants under adverse environmental conditions. In: Aftab T, Naeem M (Eds). Emerging Plant Growth Regulators in Agriculture: Roles in Stress Tolerance, Academic Press pp 215-244. https://doi.org/10.1016/B978-0-323-91005-7.00015-1
Khanna K, Ohri P, Bhardwaj R (2023). Decoding sugar regulation and homeostasis in plants: Cracking functional roles under stresses. Journal of Plant Growth Regulation 42:4797-4817 https://doi.org/10.1007/s00344-022-10727-w
Khlestkina EK (2013). The adaptive role of flavonoids: emphasis on cereals. Cereal Research Communications, 41:185-198. https://doi.org/10.1556/CRC.2013.0004
Kim JS, Kidokoro S, Yamaguchi-Shinozaki K, Shinozaki K (2024). Regulatory networks in plant responses to drought and cold stress. Plant Physiology 195(1):170-189. https://doi.org/10.1093/plphys/kiae105
Klíma M, Vítámvás P, Zelenková S, Vyvadilová M, Prášil IT (2012). Dehydrin and proline content in Brassica napus and B. Carinata under cold stress at two irradiances. Biologia Plantarum 56:157-161. https://doi.org/10.1007/s10535-012-0034-1
Kohli SK, Khanna K, Bhardwaj R, Abd_Allah EF, Ahmad P, Corpas FJ (2019). Assessment of subcellular ROS and NO metabolism in higher plants: Multifunctional signaling molecules. Antioxidants 8(12):641. https://doi.org/10.3390/antiox8120641
Kolupaev YE, Firsova EN, Yastreb TO, Lugovaya AA (2017a). The participation of calcium ions and reactive oxygen species in the induction of antioxidant enzymes and heat resistance in plant cells by hydrogen sulfide donor. Applied Biochemistry and Microbiology 53(5):573-579. https://doi.org/10.1134/S0003683817050088
Kolupaev YE, Firsova EN, Yastreb ТО (2017b). Induction of plant cells heat resistance by hydrogen sulfide donor is mediated by H2O2 generation with participation of NADPH oxidase and superoxide dismutase. Ukrainian Biochemical Journal 89(4):34-42. https://doi.org/10.15407/ubj89.04.034
Kolupaev YE, Horielova EI, Yastreb TO, Popov Y, Ryabchun NI (2018). Phenylalanine ammonia-lyase activity and content of flavonoid compounds in wheat seedlings at the action of hypothermia and hydrogen sulfide donor. Ukrainian Biochemical Journal 90(6):12-20. https://doi.org/10.15407/ubj90.06.012
Kolupaev YE, Horielova EI, Yastreb TO, Ryabchun NI, Kirichenko VV (2019a). Stress-protective responses of wheat and rye seedlings whose chilling resistance was induced with a donor of hydrogen sulfide. Russian Journal of Plant Physiology 66(4):540-547. https://doi.org/10.1134/S1021443719040058
Kolupaev YE, Karpets YV, Kabashnikova LF (2019b). Antioxidative system of plants: cellular compartmentalization, protective and signaling functions, mechanisms of regulation (Review). Applied Biochemistry and Microbiology 55(5):441-459. https://doi.org/10.1134/S0003683819050089
Kolupaev YE, Karpets YV, Beschasniy SP, Dmitriev AP (2019c). Gasotransmitters and their role in adaptive reactions of plant cells. Cytology and Genetics 53(5):392-406. https://doi.org/10.3103/S0095452719050098
Kolupaev YE, Horielova EI, Yastreb TO, Ryabchun NI, Reznik AM (2020a). Nitrogen oxide donor enhances cold-induced changes in antioxidant and osmoprotective systems of cereals. Applied Biochemistry and Microbiology 56(2):219-225. https://doi.org/10.1134/S000368382002009X
Kolupaev YE, Horielova EI, Yastreb TO, Ryabchun NI (2020b). State of antioxidant system in triticale seedlings at cold hardening of varieties of different frost resistance. Cereal Research Communications 48(2):165-171. https://doi.org/10.1007/s42976-020-00022-3
Kolupaev YE, Karpets YV, Shkliarevskyi MA, Yastreb TO, Plohovska SH, Yemets AI, Blume YB (2022). Gasotransmitters in plants: Mechanisms of participation in adaptive responses. Open Agriculture Journal 16 (Suppl-1, M5):e187433152207050. https://doi.org/10.2174/18743315-v16-e2207050
Kolupaev YE, Yastreb TO, Ryabchun NI, Kuzmyshyna NV, Marenych MM, Ryabchun VK (2023a). Signaling and protection systems in the adaptation of plants to cold. Journal of Central European Agriculture 24(1):202-215. https://doi.org/10.5513/JCEA01/24.1.3776
Kolupaev YE, Yemets AI, Yastreb TO, Blume YB (2023b). The role of nitric oxide and hydrogen sulfide in regulation of redox homeostasis at extreme temperatures in plants. Frontiers in Plant Science 14:1128439. https://doi.org/10.3389/fpls.2023.1128439
Kolupaev YuE, Kokorev OI, Shevchenko MV, Marenych MM, Kolomatska VP (2024). Participation of γ-aminobutyric acid in cell signaling processes and plant adaptation to abiotic stressors. Studia Biologica 18(1):125-154. https://doi.org/10.30970/sbi.1801.752
Kosová K, Prášil IT, Vítámvás P (2010). Role of dehydrins in plant stress response. In: Pessarakli M (Ed). Handbook of Plant and Crop Stress, 3rd Edn, Boca Raton, FL: CRC Press pp 239-285.
Lata D, Vaka DV, Karthik Nayaka VS, Sachin AJ, Nasim A, Shekhar S, Siddiqui MW (2023). Functional roles of hydrogen sulfide in postharvest physiology of fruit and vegetables. In: Aftab T, Corpas FJ (Eds). Gasotransmitters Signaling in Plants under Challenging Environment. Plant in Challenging Environments, vol 5. Springer, Cham. pp 279-297. https://doi.org/10.1007/978-3-031-43029-9_13
Lau S-E, Hamdan MF, Pua T-L, Saidi NB, Tan BC (2021). Plant nitric oxide signaling under drought stress. Plants. 10(2):360. https://doi.org/10.3390/plants10020360
Läderach P, Pacillo G, Thornton P, Osorio D, Smith D (2021). Food systems for peace and security in a climate crisis. The Lancet Planetary Health 5(5):249-250. https://doi.org/10.1016/s2542-5196(21)00056-5
Laxalt AM, Raho N, Ten Have A, Lamattina L (2007). Nitric oxide is critical for inducing phosphatidic acid accumulation in xylanase-elicited tomato cells. Journal of Biological Chemistry 282(29):21160-21168. https://doi.org/10.1074/jbc.M701212200
Levinn CM, Cerda MM, Pluth MD (2020). Activatable small-molecule hydrogen sulfide donors. Antioxidants and Redox Signaling 32(2):96-109. https://doi.org/10.1089/ars.2019.7841
Li ZG (2022). Nitric oxide and hydrogen sulfide crosstalk in plants under stress. In: Singh VP, Singh S, Tripathi DK, Romero-Puertas MC, Sandalio LM (Eds). Nitric Oxide in Plant Biology, Academic Press pp 433-452. https://doi.org/10.1016/B978-0-12-818797-5.00008-X
Li D, Limwachiranon J, Li L, Du R, Luo Z (2016). Involvement of energy metabolism to chilling tolerance induced by hydrogen sulfide in cold-stored banana fruit. Food Chemistry 208:272-278. https://doi.org/10.1016/j.foodchem.2016.03.113
Li J, Shi C, Wang X, Liu C, Ding X, Ma P, Wang X, Jia H (2020). Hydrogen sulfide regulates the activity of antioxidant enzymes through persulfidation and improves the resistance of tomato seedling to copper oxide nanoparticles (CuO NPs)-induced oxidative stress. Plant Physiology and Biochemistry 156:257-266. https://doi.org/10.1016/j.plaphy.2020.09.020
Li L, Salto-Tellez M, Tan CH, Whiteman M, Moore PK (2009). GYY4137, a novel hydrogen sulfide-releasing molecule, protects against endotoxic shock in the rat. Free Radical Biology and Medicine 47:103-113. https://doi.org/10.1016/j.freeradbiomed.2009.04.014
Li X, Jiang H, Liu F, Cai J, Dai T, Cao W, Jiang D (2013). Induction of chilling tolerance in wheat during germination by pre-soaking seed with nitric oxide and gibberellin. Plant Growth Regulation 71:31-40. https://doi.org/10.1007/s10725-013-9805-8
Li ZG, Gong M, Xie H, Yang L, Li J (2012). Hydrogen sulfide donor sodium hydrosulfide-induced heat tolerance in tobacco (Nicotiana tabacum L.) suspension cultured cells and involvement of Ca2+ and calmodulin. Plant Science 185/186:185-189.https://doi.org/10.1016/j.plantsci.2011.10.006
Li ZG, Long WB, Yang SZ, Wang YC, Tang JH, Wen L, Zhu BY, Min X (2015). Endogenous hydrogen sulfide regulated by calcium is involved in thermotolerance in tobacco Nicotiana tabacum L. suspension cell cultures. Acta Physiologiae Plantarum 37:219. https://doi.org/10.1007/s11738-015-1971-z
Li ZG, Fang JR, Bai SJ (2024). Hydrogen sulfide signaling in plant response to temperature stress. Frontiers in Plant Science 15:1337250. https://doi.org/10.3389/fpls.2024.1337250
Liang X, Zhang L, Natarajan SK, Becker DF (2013). Proline mechanisms of stress survival. Antioxidants & Redox Signaling 19(9):998-1011. https://doi.org/10.1089/ars.2012.5074
Lisjak M, Teklic T, Wilson ID, Whiteman M, Hancock JT (2013). Hydrogen sulfide: environmental factor or signalling molecule? Plant, Cell & Environment 36(9):1607-1616. https://doi.org/10.1111/pce.12073
Liu D, Pei Y (2022). The secret of H2S to keep plants young and fresh and its products. Plant Biology 24(4):587-593. https://doi.org/10.1111/plb.13377
Liu T, Ye X, Li M, Li J, Qi H, Hu X (2020a). H2O2 and NO are involved in trehalose-regulated oxidative stress tolerance in cold-stressed tomato plants, Environmental and Experimental Botany 171:103961. https://doi.org/10.1016/j.envexpbot.2019.103961
Liu FJ, Zhang XW, Cai BB, Pan DY, Fu X, Bi HG, Ai XZ (2020b). Physiological response and transcription profiling analysis reveal the role of glutathione in H2S-induced chilling stress tolerance of cucumber seedlings. Plant Science 291:110363 https://doi.org/10.1016/j.plantsci.2019.110363
Liu Q, Ding Y, Shi Y, Ma L, Wang Y, Song C, … Yang S (2021) The calcium transporter ANNEXIN1 mediates cold-induced calcium signaling and freezing tolerance in plants. EMBO Journal 40(2):e104559. https://doi.org/10.15252/embj.2020104559
Liu W, Yu K, He T, Li F, Zhang D, Liu J (2013). The low temperature induced physiological responses of Avena nuda L., a cold-tolerant plant species. The Scientific World Journal 2013:658793. https://doi.org/10.1155/2013/658793
Luo Z, Li D, Du R, Mou W (2015). Hydrogen sulfide alleviates chilling injury of banana fruit by enhanced antioxidant system and proline content. Scientia Horticulturae 183:144-151. https://doi.org/10.1016/j.scienta.2014.12.021
Lv X, Li H, Chen X, Xiang X, Guo Z, Yu J, Zhou Y (2018). The role of calcium dependent protein kinase in hydrogen peroxide, nitric oxide and ABA-dependent cold acclimation. Journal of Experimental Botany 69(16):4127-4139. https://doi.org/10.1093/jxb/ery212
Ma L, Coulter JA, Liu L, Zhao Y, Chang Y, Pu Y, Zeng X, Xu Y, Wu J, Fang Y, Bai J, Sun W (2019). Transcriptome analysis reveals key cold-stress-responsive genes in winter rapeseed (Brassica rapa L.). International Journal of Molecular Sciences 20(5):1071. https://doi.org/10.3390/ijms20051071
Ma Y, Dai X, Xu Y, Luo W, Zheng X, Zeng D, … Chong K (2015). COLD1 confers chilling tolerance in rice. Cell 160(6):1209-1221. https://doi.org/10.1016/j.cell.2015.01.046
Manasa LS, Panigrahy M, Panigrahi KCS, Rout GR (2022). Overview of cold stress regulation in plants. The Botanical Review 88:359-387. https://doi.org/10.1007/s12229-021-09267-x
Manishankar P, Kudla J (2015). Cold tolerance encoded in one SNP. Cell 160:1045-1046. https://doi.org/10.1016/j.cell.2015.02.037
Marentes E, Griffith M, Mlynarz A, Brush RE (1993). Proteins accumulate in the apoplast of winter rye leaves during cold acclimation. Physiologia Plantarum 87(4):499-507. https://doi.org/10.1111/j.1399-3054.1993.tb02499.x
Mariyam S, Bhardwaj R, Khan NA, Sahi SV, Seth CS (2023). Review on nitric oxide at the forefront of rapid systemic signaling in mitigation of salinity stress in plants: crosstalk with calcium and hydrogen peroxide. Plant Science 336:111835. https://doi.org/10.1016/j.plantsci.2023.111835
Matsumura T, Tabayashi N, Kamagata Y, Souma C, Saruyama H (2002). Wheat catalase expressed in transgenic rice can improve tolerance against low temperature stress. Physiologia Plantarum 116(3):317-327. https://doi.org/10.1034/j.1399-3054.2002.1160306.x
Mishra V, Singh P, Tripathi DK, Corpas FJ, Singh VP (2021). Nitric oxide and hydrogen sulfide: An indispensable combination for plant functioning. Trends in Plant Science 26(12):1270-1285. http://dx.doi.org/10.1016/j.tplants.2021.07.016
Mishra V, Singh P, Asif M, Singh S, Singh S, Singh D, Tripathi DK, Singh VP (2023). Gasotransmitters and omics for abiotic stress tolerance in plants. In: Fatma M, Sehar Z, Khan NA (Eds). Gasotransmitters Signaling in Plant Abiotic Stress. Signaling and Communication in Plants. Springer, Cham. Pp 31-54. https://doi.org/10.1007/978-3-031-30858-1_3
Mittler R, Zandalinas SI, Fichman Y, Van Breusegem F (2022). Reactive oxygen species signalling in plant stress responses. Nature Reviews Molecular Cell Biology 23(10):663-679. https://doi.org/10.1038/s41580-022-00499-2
Miur K, Ohta MSIZ (2010). A small ubiquitin-related modifier ligase, controls cold signaling through regulation of salicylic acid accumulation. Journal of Plant Physiology 167(7):555-560. https://doi.org/10.1016/j.jplph.2009.11.003
Molinett SA, Alfaro JF, Sáez FA, Elgueta S, Moya-León MA, Figueroa CR (2021). Postharvest treatment of hydrogen sulfide delays the softening of Chilean strawberry fruit by downregulating the expression of key genes involved in pectin catabolism. International Journal of Molecular Sciences 22(18):10008. https://doi.org/10.3390/ijms221810008
Morelli R, Russo-Volpe S, Bruno N, Lo Scalzo R (2003). Fenton-dependent damage to carbohydrates: free radical scavenging activity of some simple sugars. Journal of Agricultural and Food Chemistry 51(25):7418-7425. https://doi.org/10.1021/jf030172q
Mur LAJ, Mandon J, Persijn S, Cristescu SM, Moshkov IE, Novikova GV, … Gupta KJ (2013). Nitric oxide in plants: an assessment of the current state of knowledge. AoB Plants 5. https://doi.org/10.1093/aobpla/pls052
Nasibi F, Manouchehri Kalantari K, Manzari Tavakoli Z (2020). Effects of hydrogen sulfide on cold-induced oxidative damage in Cucumis sativus L.. International Journal of Horticultural Science and Technology 7(3):199-211. https://doi.org/10.22059/ijhst.2020.284285.301
Oliveira C, Benfeito S, Fernandes C, Cagide F, Silva T, Borges F (2018). NO and HNO donors, nitrones, and nitroxides: Past, present, and future. Medicinal Research Reviews 38(4):1159-1187. https://doi.org/10.1002/med.21461
Pandey AK, Borokotoky S, Tripathi K, Gautam A (2024). Interplay of hydrogen sulfide and plant metabolites under environmental stress. In: Modolo LV, da-Silva CJ (Eds). H2S in Plants. Past, Present and Beyond. Elsevier Inc. pp 297-317. https://doi.org/10.1016/B978-0-323-99035-6.00004-X
Peers C, Lefer DJ (2011). Emerging roles for gasotransmitters. Experimental Physiology 96(9):831-832. https://doi.org/10.1113/expphysiol.2011.057422
Peng Z, Wang Y, Zuo W-T, Gao Y-R, Li R-Z, Yu C-X, Liu Z-Y, Zheng Y, Shen Y-Y, Duan L-S (2022). Integration of metabolome and transcriptome studies reveals flavonoids, abscisic acid, and nitric oxide comodulating the freezing tolerance in Liriope spicata. Frontiers in Plant Science 12:764625. https://doi.org/10.3389/fpls.2021.76462
Prasanna BM, Cairns JE, Zaidi PH, Beyene Y, Makumbi D, Gowda M, … Zhang X (2021). Beat the stress: breeding for climate resilience in maize for the tropical rainfed environments. Theoretical and Applied Genetics 134(6):1729-1752. https://doi.org/10.1007/s00122-021-03773-7
Puyaubert J, Baudouin E (2014). New clues for a cold case: nitric oxide response to low temperature. Plant, Cell & Environment 37:2623-2630. https://doi.org/10.1111/pce.12329
Quinn PJ (1989). Effect of sugars on the phase behaviour of phospholipid model membranes. Biochemical Society Transactions 17(6):957-960. https://doi.org/10.1042/bst0170953
Rani R, Khan MA, Kayani WK, Ullah S, Naeem I, Mirza B (2017). Metabolic signatures altered by in vitro temperature stress in Ajuga bracteosa Wall. Ex. Benth. Acta Physiologiae Plantarum 39:97. https://doi.org/10.1007/s11738-017-2394-9
Riemenschneider A, Wegele R, Schmidt A, Papenbrock J (2005). Isolation and characterization of a D-cysteine desulfhydrase protein from Arabidopsis thaliana. FEBS Journal 272(5):1291-1304. https://doi.org/10.1111/j.1742-4658.2005.04567.x
Roszer T (2014). Biosynthesis of nitric oxide in plants. In: Khan M, Mobin M, Mohammad F, Corpas F (Eds). Nitric Oxide in Plants: Metabolism and Role in Stress Physiology. Springer, Cham. pp 17-32. https://doi.org/10.1007/978-3-319-06710-0_2
Ruelland E, Vaultier MN, Zachowski A, Hurry V. (2009). Cold signalling and cold acclimation in plants. Advances in Botanical Research 49:35-150. https://doi.org/10.1016/S0065-2296(08)00602-2
Sadras VO, Monzon JP (2006). Modelled wheat phenology captures rising temperature trends: shortened time to flowering and maturity in Australia and Argentina. Field Crops Research 99:136-146. https://doi.org/10.1016/j.fcr.2006.04.003
Saha J, Brauer EK, Sengupta A, Popescu SC, Gupta K, Gupta B (2015). Polyamines as redox homeostasis regulators during salt stress in plants. Frontiers in Environmental Science 3:21. https://doi.org/10.3389/fenvs.2015.00021
Saleem M, Fariduddin Q, Janda T (2021). Multifaceted role of salicylic acid in combating cold stress in plants: A review. Journal of Plant Growth Regulation 40:464-485. https://doi.org/10.1007/s00344-020-10152-x
Sanchez Granel ML, Cánepa C, Cid NG, Navarro JC, Monroig Ó, Verstraeten SV, Nudel CB, Nusblat AD (2019). Gene identification and functional characterization of a Δ12 fatty acid desaturase in Tetrahymena thermophila and its influence in homeoviscous adaptation to low temperature. Biochimica et Biophysica Acta. Molecular and Cell Biology of Lipids 1864(11):1644-1655. https://doi.org/10.1016/j.bbalip.2019.08.003
Satyakam ZG, Singh RK, Kumar R (2022). Cold adaptation strategies in plants—An emerging role of epigenetics and antifreeze proteins to engineer cold resilient plants. Frontiers in Genetics 13:909007. https://doi.org/10.3389/fgene.2022.909007
Sawa T, Takata T, Matsunaga T, Ihara H, Motohashi H, Akaike T (2022). Chemical biology of reactive sulfur species: hydrolysis driven equilibrium of polysulfides as a determinant of physiological functions. Antioxidants & Redox Signaling 36(4-6): 327-336. https://doi.org/10.1089/ars.2021.0170
Shen J, Zhang J, Zhou M, Zhou H, Cui B, Gotor C, … Xie Y (2020). Persulfidation-based modification of cysteine desulfhydrase and the NADPH oxidase RBOHD controls guard cell abscisic acid signaling. The Plant Cell 32(4):1000-1017. https://doi.org/10.1105/tpc.19.00826
Shi H, Ye T, Chan Z (2013). Exogenous application of hydrogen sulfide donor sodium hydrosulfide enhanced multiple abiotic stress tolerance in bermudagrass (Cynodon dactylon (L). Pers.). Plant Physiology and Biochemistry 71:226-234. https://doi.org/10.1016/j.plaphy.2013.07.021
Shi H, Ye T, Han N, Bian H, Liu X, Chan Z (2015). Hydrogen sulfide regulates abiotic stress tolerance and biotic stress resistance in Arabidopsis. Journal of Integrative Plant Biology 57(7):628-640. https://doi.org/10.1111/jipb.12302
Shivaraj SM, Vats S, Bhat JA, Dhakte P, Goyal V, Khatri P, … Deshmukh R (2020). Nitric oxide and hydrogen sulfide crosstalk during heavy metal stress in plants. Physiologia Plantarum 168(2):437-455. https://doi.org/10.1111/ppl.13028
Si T, Wang X, Wu L, Zhao C, Zhang L, Huang M, … Jiang D (2017). Nitric oxide and hydrogen peroxide mediate wounding-induced freezing tolerance through modifications in photosystem and antioxidant system in wheat. Frontiers in Plant Science 8:1284. https://doi.org/10.3389/fpls.2017.01284
Silveira NM, Prataviera PJ, Pieretti JC, Seabra AB, Almeida RL, Machado EC, Ribeiro RV (2021). Chitosan-encapsulated nitric oxide donors enhance physiological recovery of sugarcane plants after water deficit. Environmental and Experimental Botany 190:1045931. https://doi.org/10.1016/j.envexpbot.2021.104593
Silveira NM, Hancock JT, Machado EC, Ribeiro RV (2024). H2S priming and plant abiotic stress tolerance. In: Modolo LV, da-Silva CJ (Eds). H2S in Plants. Past, Present and Beyond. Elsevier Inc. pp 245-262. https://doi.org/10.1016/B978-0-323-99035-6.00008-7
Singh RJ, Hogg N, Neese F, Joseph J, Kalyanaraman B (1995). Trapping of nitric oxide formed during photolysis of sodium nitroprusside in aqueous and lipid phases: an electron spin resonance study. Photochemistry and Photobiology 61(4):325-330. https://doi.org/10.1111/j.1751-1097.1995.tb08616.x
Singh G, Patel A, Tiwari S, Gupta D, Prasad SM (2022). Signaling molecules hydrogen sulfide (H2S) and nitric oxide (NO): Role in microalgae under adverse environmental conditions. Acta Physiologiae Plantarum 44:68. https://doi.org/10.1007/s11738-022-03404-8
Singhal RK, Jatav HS, Aftab T, Pandey S, Mishra UN, Chauhan J, … Ahmed S (2021). Roles of nitric oxide in conferring multiple abiotic stress tolerance in plants and crosstalk with other plant growth regulators. Journal of Plant Growth Regulation 40:2303-2328. https://doi.org/10.1007/s00344-021-10446-8
Song X, Zhu L, Wang D, Liang L, Xiao J, Tang W, … Li H (2023). Molecular regulatory mechanism of exogenous hydrogen sulfide in alleviating low-temperature stress in pepper seedlings. International Journal of Molecular Sciences 24(22):16337. https://doi.org/10.3390/ijms242216337
Sougrakpam Y, Babuta P, Deswal R (2023). Nitric oxide (NO) modulates low temperature-stress signaling via S-nitrosation, a NO PTM, inducing ethylene biosynthesis inhibition leading to enhanced post-harvest shelf-life of agricultural produce. Physiology and Molecular Biology of Plants 29:2051-2065. https://doi.org/10.1007/s12298-023-01371-z
Stepanenko SM, Polovyi AM, Loboda NS (2015). Climatic changes and their impact on the economy of Ukraine. Odesa.
Sun X, Yuan Z, Wang B, Zheng L, Tan J (2023). Nitric oxide synthase (NOS)-dependent nitric oxide generation is involved in putrescine-induced chilling tolerance of Anthurium andraeanum. Scientia Horticulturae 312:111849. https://doi.org/10.1016/j.scienta.2023.111849
Tabaei-Aghdaei R, Pearce RS, Harrison P (2003). Sugars regulate cold-induced gene expression and freezing tolerance in barley cell cultures. Journal of Experimental Botany 54:1565-1575. https://doi.org/10.1093/jxb/erg173
Takahashi D, Li B, Nakayama T, Kawamura Y, Uemura M (2013). Plant plasma membrane proteomics for improving cold tolerance. Frontiers in Plant Science 4:90. https://doi.org/10.3389/fpls.2013.00090
Takahashi D, Uemura M, Kawamura Y (2018). Freezing tolerance of plant cells: from the aspect of plasma membrane and microdomain. In: Iwaya-Inoue M, Sakurai M, Uemura M (Eds). Survival Strategies in Extreme Cold and Desiccation. Springer Nature Singapore pp 61-79. https://doi.org/10.1007/978-981-13-1244-1_4
Terletskaya NV, Shadenova EA, Litvinenko YA, Ashimuly K, Erbay M, Mamirova A, … Djangalina ED (2024). Influence of cold stress on physiological and phytochemical characteristics and secondary metabolite accumulation in microclones of Juglans regia L. International Journal of Molecular Sciences. 25:4991. https://doi.org/10.3390/ijms25094991
Tian W, Huang D, Geng B, Zhang Q, Feng J, Zhu S (2020). Regulation of the biosynthesis of endogenous nitric oxide and abscisic acid in stored peaches by exogenous nitric oxide and abscisic acid. Journal of the Science of Food and Agriculture 100(5):2136-2144. https://doi.org/10.1002/jsfa.10237
Turk H, Genisel M. (2020). Melatonin-related mitochondrial respiration responses are associated with growth promotion and cold tolerance in plants. Cryobiology 92:76-85. https://doi.org/10.1016/j.cryobiol.2019.11.006
Upadhyaya H (2012). Changes in antioxidative responses to low temperature in tea [Camellia sinensis (L) O. Kuntze] cultivars. International Journal of Modern Botany 2(4):83-87. https://doi.org/10.5923/j.ijmb.20120204.03
Valderrama R, Begara-Morales JC, Chaki M, Mata-Pérez C, Padilla MN, Barroso JB (2019). Hydrogen peroxide (H2O2)- and nitric oxide (NO)-derived posttranslational modifications. In: Gupta D, Palma J, Corpas F (Eds). Nitric oxide and Hydrogen Peroxide Signaling in Higher Plants. Springer, Cham. pp 37-67. https://doi.org/10.1007/978-3-030-11129-8_3
Wang PG, Xian M, Tang X, Wu X, Wen Z, Cai T, Janczuk AJ (2002). Nitric oxide donors: chemical activities and biological applications. Chemical Reviews 102(4):1091-1134. https://doi.org/10.1021/cr000040l
Wang Y, Xiong F, Nong S, Liao J, Xing A, Shen Q, Ma Y, Fang W, Zhu X (2020). Effects of nitric oxide on the GABA, polyamines, and proline in tea (Camellia sinensis) roots under cold stress. Scientific Reports 10:12240 https://doi.org/10.1038/s41598-020-69253-y
Wang C, Huang D, Tian W, Zhu S (2021). Nitric oxide alleviates mitochondrial oxidative damage and maintains mitochondrial functions in peach fruit during cold storage. Scientia Horticulturae 287:110249. https://doi.org/10.1016/j.scienta.2021.110249
Wang L, Chen S, Shao J, Zhang C, Mei L, Wang K, Jin P, Zheng Y (2022a). Hydrogen sulfide alleviates chilling injury in peach fruit by maintaining cell structure integrity via regulating endogenous H2S, antioxidant and cell wall metabolisms. Food Chemistry 391:133283. https://doi.org/10.1016/j.foodchem.2022.133283
Wang J, Zhao Y, Ma Z, Zheng Y, Jin P (2022b). Hydrogen sulfide treatment alleviates chilling injury in cucumber fruit by regulating antioxidant capacity, energy metabolism and proline metabolism. Foods 11:2749. https://doi.org/10.3390/foods11182749
Wang Y, Luo Z, Du R, Liu Y, Ying T, Mao L (2013). Effect of nitric oxide on antioxidative response and proline metabolism in banana during cold storage. Journal of Agricultural and Food Chemistry 61(37):8880-8887. https://doi.org/10.1021/jf401447y
Wimalasekera R, Tebartz F, Scherer GFE (2011). Polyamines, polyamine oxidases and nitric oxide in development, abiotic and biotic stresses. Plant Science 181:593-603. https://doi.org/10.1016/j.plantsci.2011.04.002
Wu G, Niu X, Chen J, Wu C, Li Y, Li Y, Cui D, He X, Wang F, Li S (2024). Hydrogen sulfide alleviates oxidative damage under chilling stress through mitogen-activated protein kinase in tomato. Antioxidants 13(3):323. https://doi.org/10.3390/antiox13030323
Wu P, Kong Q, Bian J, Ahammed GJ, Cui H, Xu W, Yang Z, Cui J, Liu H (2022). Unveiling molecular mechanisms of nitric oxide-induced low-temperature tolerance in cucumber by transcriptome profiling. International Journal of Molecular Sciences 23(10):5615. https://doi.org/10.3390/ijms23105615
Wu P, Xiao C, Cui J, Hao B, Zhang W, Yang Z, Ahammed G, Liu H, Cui H (2021). Nitric oxide and its interaction with hydrogen peroxide enhance plant tolerance to low temperatures by improving the efficiency of the Calvin cycle and the ascorbate–glutathione cycle in cucumber seedlings. Journal of Plant Growth Regulation 40(6) 2390-2408. https://doi.org/10.1007/s00344-020-10242-w
Xu M, Dong J, Zhang M, Xu M, Dong J, Zhang M, Xu X, Sun L (2012). Cold-induced endogenous nitric oxide generation plays a role in chilling tolerance of loquat fruit during postharvest storage. Postharvest Biology and Technology 65:5-12. https://doi.org/10.1016/j.postharvbio.2011.10.008
Yang Z, Wang X, Cui J, Liu H, Cui H, Wu P (2023). Nitric oxide and glutathione act synergistically to improve PSII activity and PSI electron transfer under chilling stress in cucumber leaves. Journal of Plant Growth Regulation 42:5558-5573. https://doi.org/10.1007/s00344-023-10936-x
Yastreb TO, Kolupaev YE, Kokorev AI, Маkaova BE, Ryabchun NI, Zmiievska OA, Pospielova GD (2023). Indices of antioxidant and osmoprotective systems in seedlings of winter wheat cultivars with different frost resistance. Ukrainian Biochemical Journal 95(1):73-84. https://doi.org/10.15407/ubj95.01.073
Yatsyshyn VY, Kvasko AY, Yemets AI (2017). Genetic approaches in research on the role of trehalose in plants, Cytology and Genetics 51(5): 371-383. https://doi.org/10.3103/S0095452717050127
Yemets AI, Karpets YuV, Kolupaev YuE, Blume YaB (2019). Emerging technologies for enhancing ROS/RNS homeostasis. In: Hasanuzzaman M, Fotopoulos V, Nahar K, Fujita M (Eds). Reactive Oxygen, Nitrogen and Sulfur Species in Plants: Production, Metabolism, Signaling and Defense Mechanisms, vol. 2. John Wiley & Sons Ltd, pp 873-922. https://doi.org/10.1002/9781119468677.ch39
Yi B, Liu Y, Wu Z, Zheng Y, Chen H, Jin P (2024). Hydrogen sulfide alleviates chilling injury of zucchini fruit by regulating antioxidant capacity, endogenous hydrogen sulfide, pro-line, and polyamine metabolism. Postharvest Biology and Technology Volume 208:112638. https://doi.org/10.1016/j.postharvbio.2023.112638
Yuan P, Yang T, Poovaiah BW (2018). Calcium signaling-mediated plant response to cold stress. International Journal of Molecular Sciences 19(12):3896. https://doi.org/10.3390/ijms19123896
Zhang C, Fei SZ, Arora R, Hannapel DJ (2010). Ice recrystallization inhibition proteins of perennial ryegrass enhance freezing tolerance. Planta 232:155-164. https://doi.org/10.1007/s00425-010-1163-4
Zhang H, Hu SL, Zhang ZJ, Hu LY, Jiang CX, Wei ZJ, Liu J, Wang HL, Jiang ST (2011). Hydrogen sulfide acts as a regulator of flower senescence in plants. Postharvest Biology and Technology 60(3):251-257. https://doi.org/10.1016/j.postharvbio.2011.01.006
Zhang JY, Luo W, Zhao Y, Xu YY, Song SH, Chong K (2016). Comparative metabolomic analysis reveals a reactive oxygen species-dominated dynamic model underlying chilling environment adaptation and tolerance in rice New Phytologist 211(4):1295-1310. https://doi.org/10.1111/nph.14011
Zhang T, Li F, Fan C, Li X, Zhang F, He J. (2017). Role and interrelationship of MEK1-MPK6 cascade, hydrogen peroxide and nitric oxide in darkness-induced stomatal closure. Plant Science 262:190-199. https://doi.org/10.1016/j.plantsci.2017.06.010
Zhang W, Jiang B, Li W, Song H, Yu Y, Chen J (2009). Polyamines enhance chilling tolerance of cucumber (Cucumis sativus L.) through modulating antioxidative system. Scientia Horticulturae 122:200-208. https://doi.org/10.1016/j.scienta.2009.05.013
Zhang X, Fu X, Liu F, Wang Y, Bi H, Ai X (2021). Hydrogen sulfide improves the cold stress resistance through the CsARF5-CsDREB3 module in cucumber. International Journal of Molecular Sciences 22:13229. https://doi.org/10.3390/ijms222413229
Zhang Y, Hogg N (2005). S-Nitrosothiols: cellular formation and transport. Free Radical Biology and Medicine 38(7):831-838. https://doi.org/10.1016/j.freeradbiomed.2004.12.016
Zhao MG, Chen L, Zhang LL, Zhang WH (2009). Nitric reductase-dependent nitric oxide production is involved in cold acclimation and freezing tolerance in Arabidopsis. Plant Physiology 151(2):755-767. https://doi.org/10.1104/pp.109.140996
Zhao R, Sheng J, Lv S, Zheng Y, Zhang J, Yu M, Shen L (2011). Nitric oxide participates in the regulation of LeCBF1 gene expression and improves cold tolerance in harvested tomato fruit. Postharvest Biology and Technology 62(2):121-126. https://doi.org/10.1016/j.postharvbio.2011.05.013
Zhao Y, Zhao L, Hu S, Hou Y, Zheng Y, Jin P (2022). Hydrogen sulfide: a luminous future in the postharvest preservation of fruits and vegetables. Food Materials Research 2:3 https://doi.org/10.48130/FMR-2022-0003
Zhao Y, Zhao L, Hu S, Hou Y, Wang J, Zheng Y, Jin P (2023). Hydrogen sulfide-induced chilling resistance in peach fruit is performed via sustaining the homeostasis of ROS and RNS. Food Chemistry 398:133940. https://doi.org/10.1016/j.foodchem.2022.133940
Zhen Y, Ungerer MC (2008). Relaxed selection on the CBF/DREB1 regulatory genes and reduced freezing tolerance in the southern range of Arabidopsis thaliana. Molecular Biology and Evolution 25(12):2547-2555. https://doi.org/10.1093/molbev/msn196
Zheng JL, Hu LY, Hu KD, Wu J, Yang F, Zhang H (2016). Hydrogen sulfide alleviates senescence of fresh-cut apple by regulating antioxidant defense system and senescence-related gene expression. Hortscience 51(2):152-158. https://doi.org/10.21273/HORTSCI.51.2.152
Zhong H, Yu H, Chen J, Sun J, Guo L, Huang P and Zhong Y (2020) Hydrogen sulfide and endoplasmic reticulum stress: A potential Therapeutic Target for Central Nervous System Degeneration Diseases. Frontiers in Pharmacology 11:702. https://doi.org/10.3389/fphar.2020.00702
Zhou J, Wang J, Shi, K, Xia XJ, Zhou YH, Yu JQ (2012). Hydrogen peroxide is involved in the cold acclimation-induced chilling tolerance of tomato plants. Plant Physiology and Biochemistry 60:141-149. https://doi.org/10.1016/j.plaphy.2012.07.010
Zhu L, Yang R, Sun Y, Zhang F, Du H, Zhang W, Wan C, Chen J (2021). Nitric oxide maintains postharvest quality of navel orange fruit by reducing postharvest rotting during cold storage by enhancing antioxidant activity, Physiological and Molecular Plant Pathology 113:101589. https://doi.org/10.1016/j.pmpp.2020.101589
Ziogas V, Tanou G, Filippou P, Diamantidis G, Miltiadis V, Fotopoulos V, Molassiotis A (2013). Nitrosative responses in citrus plants exposed to six abiotic stress conditions. Plant Physiology and Biochemistry 68:118-126. https://doi.org/10.1016/j.plaphy.2013.04.004
Ziogas V, Molassiotis A, Fotopoulos V, Tanou G (2018). Hydrogen sulfide: A potent tool in postharvest fruit biology and possible mechanism of action. Frontiers in Plant Science 9:1375. https://doi.org/10.3389/fpls.2018.01375
Zivanovic J, Kouroussis E, Kohl JB, Adhikari B, Bursac B, Schott-Roux S, … Filipovic MR (2019). Selective persulfide detection reveals evolutionarily conserved antiaging effects of S-sulfhydration. Cell Metabolism 30(6):1152-1170.e13. https://doi.org/10.1016/j.cmet.2019.10.007
Zulfiqar F, Hancock JT (2020). Hydrogen sulfide in horticulture: Emerging roles in the era of climate change. Plant Physiology and Biochemistry 155:667-675. https://doi.org/10.1016/j.plaphy.2020.08.010
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Yuriy E. KOLUPAEV, Natalia I. RYABCHUN, Liana I. RELINA, Tetiana O. YASTREB, Natalia Yu. YEGOROVA, Valeriia P. KOLOMATSKA
This work is licensed under a Creative Commons Attribution 4.0 International License.
Papers published in Notulae Scientia Biologicae are Open-Access, distributed under the terms and conditions of the Creative Commons Attribution License.
© Articles by the authors; licensee SMTCT, Cluj-Napoca, Romania. The journal allows the author(s) to hold the copyright/to retain publishing rights without restriction.
License:
Open Access Journal - the journal offers free, immediate, and unrestricted access to peer-reviewed research and scholarly work, due SMTCT supports to increase the visibility, accessibility and reputation of the researchers, regardless of geography and their budgets. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author.