Microparticles of extract of Yucca baccata Torr. and chitosan: characterization, antioxidants, and antimicrobial properties
DOI:
https://doi.org/10.55779/nsb16412028Keywords:
bacterial resistance, biopolymers, foodborne pathogens, natural therapy, plant extractsAbstract
Antibiotic bacterial resistance contributes to the high prevalence of bacterial infection worldwide. Alternative strategies are plant extracts and chitosan (QS). In this study, Yucca baccata Torr. was collected from Northwest Mexico, and chitosan had 25% acetylation. The immobilization efficiency between the YBE-QS, the antioxidant and antibacterial properties of the Y. baccata extract (YBE), and microparticles (MPs) were determined. The saponin concentration was 24.22% (w/w). The MPs of QS and the YBE-QS had an average diameter of 265.59 ± 96.30 and 271.80 ± 91.86 μm, respectively. The immobilization efficiency was 86.7 ± 3.2%. The antioxidant capacity by the ABTS assay of YBE, MPs of QS, and YBE-QS was 244,666.66 ± 12,253.33, 40.0 ± 11.3, and 48.0 ± 1.7 µMol TE mg-1 respectively; by the DPPH assay 173,361.11 ± 15,030.83, 44.4 ± 3.1, and 320 .1 ± 11.7 µMol TE mg-1, respectively; and by the FRAP 774.754 ± 24.509, 0.190 ± 0.008, and 0.955 ± 0.161 µMol TE mg-1. The YBE tended to show the lowest MICs and MBCs against all studied bacteria. On the other hand, YBE-QS showed better antimicrobial properties than QS MPs. Salmonella Typhimurium and Escherichia coli O157:H7 showed high sensitivity to the MPs. This study will contribute to the bioactive profile of Y. baccata, showing its potential importance to the pharmaceutical and food industries.
Metrics
References
Aldayel MF (2023). The synergistic effect of capsicum aqueous extract (Capsicum annuum) and chitosan against multidrug-resistant bacteria. Journal of King Saud University - Science 35:102438. https://doi.org/10.1016/j.jksus.2022.102438
Ardila N, Daigle F, Heuzey MC, Ajji A (2017). Effect of chitosan physical form on its antibacterial activity against pathogenic bacteria. Journal of Food Science 82:679-686. https://doi.org/10.1111/1750-3841.13635
Asati N, Yadava RN (2018). Antibacterial activity of a triterpenoid saponin from the stems of Caesalpinia pulcherrima Linn. Natural Product Research 32:499-507. https://doi.org/10.1080/14786419.2017.1317772
Baccou JC, Lambert F, Sauvaire Y (1977). Spectrophotometric method for the determination of total steroidal sapogenin. Analyst 102:458-465. https://doi.org/10.1039/an9770200458
Batista P, Castro PM, Madureira AR, Sarmento B, Pintado M (2021). Preparation, characterization and evaluation of guar films impregnated with relaxing peptide loaded into chitosan microparticles. Applied Sciences 11:9849. https://doi.org/10.3390/app11219849
Beaney P, Lizardi-Mendoza J, Healy M (2005). Comparison of chitins produced by chemical and bioprocessing methods. Journal of Chemical Technology & Biotechnology 80:145-150. https://doi.org/10.1002/jctb.1164
Benzie IFF, Strain JJ (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Analytical Biochemistry 239:70-76. https://doi.org/10.1006/abio.1996.0292
Borra SK, Gurumurthy P, Mahendra J (2013). Antioxidant and free radical scavenging activity of curcumin determined by using different in vitro and ex vivo models. Journal of Medicinal Plants Research 7(36):2680-2690. https://doi.org/10.5897/JMPR2013.5094
Culhuac EB, Maggiolino A, Elghandour MMMY, De Palo P, Salem AZM (2023). Antioxidant and anti-inflammatory properties of phytochemicals found in the Yucca genus. Antioxidants 12:574. https://doi.org/10.3390/antiox12030574
Duraisamy N, Dhayalan S, Shaik MR, Shaik AH, Shaik JP, Shaik B (2022). Green synthesis of chitosan nanoparticles using Martynia annua L. ethanol leaf extract and their antibacterial activity. Crystals 12:1550. https://doi.org/10.3390/cryst12111550
Etemadi S, Barhaghi MHS, Leylabadlo HE, Memar MY, Mohammadi AB, Ghotaslou R (2021). The synergistic effect of turmeric aqueous extract and chitosan against multidrug-resistant bacteria. New Microbes and New Infections 41:100861. https://doi.org/10.1016/j.nmni.2021.100861
Goy RC, Morais STB, Assis OBG (2016). Evaluation of the antimicrobial activity of chitosan and its quaternized derivative on E. coli and S. aureus growth. Revista Brasileira de Farmacognosia 26:122-127. https://doi.org/10.1016/j.bjp.2015.09.010
Gutiérrez-García GJ, Quintana-Romero LA, Morales-Figueroa GG, Esparza-Romero J, Pérez-Morales R, López-Mata MA, … Soto-Valdez H (2021). Effect of Yucca baccata butanolic extract on the shelf life of chicken and development of an antimicrobial packaging for beef. Food Control 127:108142. https://doi.org/10.1016/j.foodcont.2021.108142
Hassan SM, Haq AU, Byrd JA, Berhow MA, Cartwright AL, Bailey CA (2010). Haemolytic and antimicrobial activities of saponin-rich extracts from guar meal. Food Chemistry 119:600-605. https://doi.org/10.1016/j.foodchem.2009.06.066
Herald TJ, Gadgil P, Tilley M (2012). High-throughput micro plate assays for screening flavonoid content and DPPH-scavenging activity in sorghum bran and flour. Journal of the Science of Food and Agriculture 92:2326-2331. https://doi.org/10.1002/jsfa.5633
León-Trujillo RDC (2017). Caracterización y evaluación de saponinas de Yucca baccata contra trofozoítos de Giardia intestinalis in vitro [Characterization and evaluation of saponins from Yucca baccata against Giardia intestinalis trophozoites in vitro]. PhD Thesis, Centro de Investigación en Alimentación y Desarrollo, A.C., Mexico. http://ciad.repositorioinstitucional.mx/jspui/handle/1006/1065
Jafri SAA, Khalid ZM, Khan MZ, Jogezai N (2022). Evaluation of phytochemical and antioxidant potential of various extracts from traditionally used medicinal plants of Pakistan. Open Chemistry 20:1337-1356. https://doi.org/10.1515/chem-2022-0242
Kowalska-Krochmal B, Dudek-Wicher R (2021). The minimum inhibitory concentration of antibiotics: methods, interpretation, clinical relevance. Pathogens 10:165. https://doi.org/10.3390/pathogens10020165
Kregiel D (2017). Application and Characterization of Surfactants. In: Reza Najjar (Ed). Saponin-Based, Biological-Active Surfactants from Plants. InTech, Rijeka, Croatia pp 184-305
Kuo CK, Ma PX (2001). Ionically crosslinked alginate hydrogels as scaffolds for tissue engineering: Part 1. Structure, gelation rate and mechanical properties. Biomaterials 22:511-521. https://doi.org/10.1016/S0142-9612(00)00201-5
Latupeirissa J, Tanasale MFJDP, Fransina EG, Noya A (2022). Synthesis and characterization of chitosan-citrate microparticle using ionic gelation methods. Indonesian Journal of Chemical Research 10:1-7. https://doi.org/10.30598/ijcr.2022.10-lat
Lengyel M, Kállai-Szabó N, Antal V, Laki AJ, Antal I (2019). Microparticles, microspheres, and microcapsules for advanced drug delivery. Scientia Pharmaceutica 87:20. https://doi.org/10.3390/scipharm87030020
Li J, Zhuang S (2020). Antibacterial activity of chitosan and its derivatives and their interaction mechanism with bacteria: current state and perspectives. European Polymer Journal 138:109984. https://doi.org/10.1016/j.eurpolymj.2020.109984
Luque-Alcaraz AG, Lizardi J, Goycoolea FM, Valdez MA, Acosta AL, Iloki-Assanga SB, Higuera-Ciapara I, Argüelles-Monal W (2012). Characterization and antiproliferative activity of nobiletin-loaded chitosan nanoparticles. Journal of Nanomaterials 2012:e265161. https://doi.org/10.1155/2012/265161
Makkar HPS, Siddhuraju P, Becker K (2007). Plant secondary metabolites, methods in molecular biologyTM. Humana Press, Totowa, New Jersey. https://doi.org/10.1007/978-1-59745-425-4
Moghimipour E, Handali S (2015). Saponin: properties, methods of evaluation and applications. Annual Research & Review in Biology 5:207-220. https://doi.org/10.9734/ARRB/2015/11674
Morales-Figueroa GG, Pereo-Vega GD, Reyna-Murrieta ME, Pérez-Morales R, López-Mata MA, Sánchez-Escalante JJ, … Quihui-Cota L (2022). Antibacterial and antioxidant properties of extracts of Yucca baccata, a plant of Northwestern Mexico, against pathogenic bacteria. BioMed Research International 2022:1-8. https://doi.org/10.1155/2022/9158836
Muxika A, Etxabide A, Uranga J, Guerrero P, de la Caba K (2017). Chitosan as a bioactive polymer: processing, properties and applications. International Journal of Biological Macromolecules 105:1358-1368. https://doi.org/10.1016/j.ijbiomac.2017.07.087
Newbold CJ, el Hassan SM, Wang J, Ortega ME, Wallace RJ (1997). Influence of foliage from African multipurpose trees on activity of rumen protozoa and bacteria. British Journal of Nutrition 78:237-249. https://doi.org/10.1079/bjn19970143
Parvekar P, Palaskar J, Metgud S, Maria R, Dutta S (2020). The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of silver nanoparticles against Staphylococcus aureus. Biomaterial Investigations in Dentistry 7:105-109. https://doi.org/10.1080/26415275.2020.1796674
Rajalakshmi A, Krithiga N, Jayachitra A (2013). Antioxidant activity of the chitosan extracted from shrimp exoskeleton. Middle-East Journal of Scientific Research 16(10):1446-1451. https://www.idosi.org/mejsr/mejsr16(10)13/22.pdf
Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine 26:1231-1237. https://doi.org/10.1016/s0891-5849(98)00315-3
Rejinold NS, Muthunarayanan M, Muthuchelian K, Chennazhi KP, Nair SV, Jayakumar R (2011). Saponin-loaded chitosan nanoparticles and their cytotoxicity to cancer cell lines in vitro. Carbohydrate Polymers 84:407-416. https://doi.org/10.1016/j.carbpol.2010.11.056
Sahoo S, Chakraborti CK, Mishra SC, Naik S, Nanda UN (2011). FTIR and Raman spectroscopy as a tool for analyzing sustained release hydrogel of ciprofloxacin/carbopol polymer. International Journal of Pharmaceutical Sciences and Research 7:268-277. https://doi.org/10.13040/IJPSR.0975-8232.2(2).268-77
Salud OM de la (2018). Guías para la calidad del agua de consumo humano: cuarta edición que incorpora la primera addenda [Guidelines for drinking-water quality: fourth edition incorporating the first addendum]. Organización Mundial de la Salud. https://www.who.int/es/publications/i/item/9789241549950
Savin S, Craciunescu O, Oancea A, Ilie D, Ciucan T, Antohi LS, Toma A, Nicolescu A, Deleanu C, Oancea F (2020). Antioxidant, cytotoxic and antimicrobial activity of chitosan preparations extracted from Ganoderma lucidum mushroom. Chemistry & Biodiversity 17.
https://doi.org/10.1002/cbdv.202000175
Silvestro I, Francolini I, Di Lisio V, Martinelli A, Pietrelli L, Scotto d’Abusco A, Scoppio A, Piozzi A (2020). Preparation and characterization of TPP-chitosan crosslinked scaffolds for tissue engineering. Materials 13:3577. https://doi.org/10.3390/ma13163577
Soetan KO, Oyekunle MA, Aiyelaagbe OO, Fafunso MA (2006). Evaluation of the antimicrobial activity of saponins extract of Sorghum bicolor L. Moench. African Journal of Biotechnology 5. https://doi.org/10.4314/ajb.v5i23.56024
Soleymanfallah S, Khoshkhoo Z, Hosseini SE, Azizi MH (2022). Preparation, physical properties, and evaluation of antioxidant capacity of aqueous grape extract loaded in chitosan-TPP nanoparticles. Food Science & Nutrition 10:3272-3281. https://doi.org/10.1002/fsn3.2891
Sonfack G, Fossi Tchinda C, Simo IK, Bitchagno GTM, Nganou BK, Çelik İ, … Tane P (2021). Saponin with antibacterial activity from the roots of Albizia adianthifolia. Natural Product Research 35:2831-2839. https://doi.org/10.1080/14786419.2019.1672689
Sreekumar S, Goycoolea FM, Moerschbacher BM, Rivera-Rodriguez GR (2018). Parameters influencing the size of chitosan-TPP nano- and microparticles. Scientific Reports 8:4695. https://doi.org/10.1038/s41598-018-23064-4
Tsai GJ, Su WH, Chen HC, Pan CL (2002). Antimicrobial activity of shrimp chitin and chitosan from different treatments and applications of fish preservation. Fisheries Science 68:170-177. https://doi.org/10.1046/j.1444-2906.2002.00404.x
Umar ZG, Abalaka ME, Daniyan SY, Babayi H (2022). Determination of the MIC and MBC of chitosan from cockroach and cricket against some bacterial isolates. International Journal of Microbiology and Biotechnology 7:177-182. https://doi.org/10.11648/j.ijmb.20220704.14
United Nations, Water and Sanitation. United Nations Sustainable Development. Retrieved 2024 April from https://www.un.org/sustainabledevelopment/water-and-sanitation/
Vega Mazahua M (2020). Aislamiento y caracterización espectroscópica de saponinas de hojas y raíz de Yucca baccata y determinación de su actividad antiproliferativa sobre las líneas celulares HeLa y M12.C3.F6 [Isolation and pectroscopic characterization of saponins from leaves and roots of Yucca baccata and determination of their antiproliferative activity on HeLa and M12.C3.F6 cell lines]. MSc Dissertation, Universidad Veracruzana, Mexico. https://cdigital.uv.mx/handle/1944/51724
World Health Organization. WHO estimates of the global burden of foodborne diseases: foodborne disease burden epidemiology reference group 2007-2015. Retrieved 2024 April 16 from: https://www.who.int/publications/i/item/9789241565165
World Health Organization. Antibiotic resistance. Retrieved 2024 April 16 from: https://www.who.int/news-room/fact-sheets/detail/antibiotic-resistance
Wijanarko A, Ginting MJ, Sahlan M, Savitri IKE, Florensia Y, Sudiarta MR, Pastika S, Rafiki F, Hermansyah H (2017). Saponin isolation as main ingredients of insecticide and collagen type I from crown of thorn–starfish (Acanthaster planci). IOP Conference Series: Earth and Environmental Science 89:012032. https://doi.org/10.1088/1755-1315/89/1/012032

Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Ana C. ACUÑA-GALLARDO, Jaime LIZARDI-MENDOZA, Claudia N. PONCE-ACOSTA, Gloria G. MORALES-FIGUEROA, Rosalva PÉREZ-MORALES, Marco A. LÓPEZ-MATA, José J. SÁNCHEZ-ESCALANTE, Karla G. MARTÍNEZ-ROBINSON, Ildefonso GUERRERO-ENCINAS, Luis QUIHUI-COTA

This work is licensed under a Creative Commons Attribution 4.0 International License.
Papers published in Notulae Scientia Biologicae are Open-Access, distributed under the terms and conditions of the Creative Commons Attribution License.
© Articles by the authors; licensee SMTCT, Cluj-Napoca, Romania. The journal allows the author(s) to hold the copyright/to retain publishing rights without restriction.
License:
Open Access Journal - the journal offers free, immediate, and unrestricted access to peer-reviewed research and scholarly work, due SMTCT supports to increase the visibility, accessibility and reputation of the researchers, regardless of geography and their budgets. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author.