The role of leaf epidermis in providing buoyancy to Hydrocharis morsus-ranae (Hydrocharitaceae)
DOI:
https://doi.org/10.55779/nsb16411879Keywords:
cell wall;, electron microscopy, laser confocal microscopy, monolignols, siliconAbstract
The leaf micromorphology and ultrastructure of Hydrocharis morsus-ranae leaves were examined using light microscopy, scanning electron microscopy, and laser confocal microscopy. We used also the Pascal program (LSM 5) for detected of fluorescence intensity chlorophylls and intensity of fluorescence intensity of monolignols, and also for to calculate the area of the periclinal walls of the epidermis as well as the volume of air occupied by the deepening cushions formed by the main cells of the lower epidermis. The study found that buoyancy affects the micromorphology of the upper and lower epidermis, the formation of aerenchyma between the mesophyll and epidermis, and the presence of air space under the cells of the lower epidermis. Differences in the ultrastructure of the upper and lower epidermis walls and the presence of silicon only on the upper epidermis suggest different functions for these tissues. The content of polysaccharides and monolignols in the leaves depends on the type of epidermal cells and the walls that form air cushions under the leaf blade. The study discusses the role of the air cushion and the involvement of monolignols and callose in plant adaptation to buoyancy. The article also explores the functional role of anticlinal wall projections on the leaf surfaces, which help the leaves float and stay on the water.
Metrics
References
Ancibor E (1979). Systematic anatomy of vegetative organs of the Hydrocharitaceae. Botanical Journal of the Linnean Society 78(4):237-266. http://dx.doi.org/10.1111/j.1095-8339.1979.tb02570.x
Apostolakos P, Livanos TL, Nikolakopoulou BG (2010). Callose implication in stomatal opening and closure in the fern Asplenium nidus. New Phytologist 186(3):623-635. https://doi.org/10.1111/j.1469-8137.2010.03206.x
Arasimovich V (1987). The determination of water content in plants samples. In: Ermakov A (Eds). Methods of Biochemical Study of Plants. Publ. Agropromizdat, Leningrad, Russia, pp 20-32.
Bercu R (2003). Some histological and cytological features on four hydrophytes occurring in the Danube Delta (Romania). Contributii Botanice. Grădina Botanică “Alexandru Borza” Cluj-Napoca 38(1):127-134.
Brown RM (1996). The biosynthesis of cellulose. Journal of Macromolecular Science 33:1345-1373. https://doi.org/10.1080/10601329608014912
Bücking H, Heyser JB (2000). Subcellular compartmentation of elements in non-mycorrhizal and mycorrhizal roots of Pinus sylvestris an X-ray microanalysis study. II. The distribution of calcium, potassium and sodium. The New Phytologist 145:321-331. https://doi.org/10.1046/j.1469-8137.2000.00574.x
Catling PM, Dore WG (1982). Status and identification of Hydrocharis morsus-ranae and Limnbobium spongia (Hydrocharitaceae) in Northeastern North America. Rhodora 84:523-545. https://doi.org/biostor.org/reference/138584
Catling PM, Mitrow G, Haber E, Posluszny U, Charlton WA (2003). The biology of Canadian weeds. Hydrocharis morsus-ranae L. Canadian Journal of Plant Science 83(4):1001 1016. https://doi.org/10.4141/P02-033
Chen Xiong-Yan, Kim JY (2009). Callose synthesis in higher plants. Plant Signaling and Behavior 4(6):489-492. https://doi.org/10.4161/psb.4.6.8359
Christiernin M (2006). Composition of lignin in outer cell-wall layers. PhD Thesis, Division of Wood Chemistry and Pulp Technology, Royal Institute of Technology, Stockholm, pp 1-53.
Currie H, Shin CY (1968). Sieve tuber and callose in Ellodea leaves. American Journal of Botany 55(2):145-152. https://doi.org/10.1002/j.1537-2197.1968.tb06954.x
Currie H, Perry CC (2007). Silica in plants: biological, biochemical and chemical studies. Annals of Botany 100(7):1383-1389. https://doi.org/10.1093/aob/mcm247
Czihak C, Muller M, Schober H, Heux L, Vogl G (1999). Dynamics of water adsorbed to cellulose. Physica B 266:87-91. https://doi.org/10.1016/S0921-4526(98)01497-5
Dabney C, Ostergaard J, Watkins E, Chen Ch (2016). A novel method to characterize silica bodies in grasses. Plant Methods 12(3):3-10. https://doi.org/10.1186/s13007-016-0108-8
Dixon RR, Chen F, Guo D, Parvathi K (2001) The biosynthesis of monolignols: a “metabolic grid”, or independent pathways to guaiacyl and syringyl units? Phytochemistry 57:1069-1084. https://doi.org/10.1016/S0031-9422(01)00092-9
Dmitriev AP (2000). Phytoalexins and their role in plant resistance. Kiev, Nauk. Dumka.
Dobrochaeva DN, Kotov M, Prokudin Yu (1987). Higher Plants Identifer. Kiev, Publ Naukova Dumka.
Epstein E (1999). Silicon. Annual Review of Plant Physiology and Plant Molecular Biology 50:641-664. http://dx.doi.org/10.1146/annurev.arplant.50.1.641
Ganie AH, Bashir A, Khuroo AA, Tali B, Reshi ZA, Shan MA, Wafai BA (2016). A new record of an invasive aquatic plant Hydrocharis morsus-ranae (Hydrochatitaceae), researching to the Kashmir Himalaya. Journal of Japanese Botany 91:100-104. https://www.researchgate.net/publication/301362988
Guerriero G, Hausman JF, Legay S (2016). Silicon and the plant extracellular matrix. Frontiers in Plant Science 463:1-8. https://doi.org/10.3389/fpls.2016.00463
Hansen SE, Cahill BC, Hackett RA, Monfils MJ, Goebel RT, Asencio Sh, Monfils A (2022). Aggregated occurrence records of invasive European frog-bit (Hydrocharis morsus-ranae L.) across North America. Biodiversity Data Journal V 10:e77492. https://doi.org/10.3897/BDJ.10.e77492
Hatttori A, Inanaga S, Araki H, An P, Mortia S, Luxova M, Lux A (2005). Application of silicon enhanced drought tolerance in Sorghum bicolor. Physiologia Plantarum 123(4):459-466. https//doi.org/10.1111/j.1399-3054.2005.00481.x
Herth W (1980). Calcofluor white and congo-red inhibit microfibril assembly of Poterio chromonas: evidence for a gap between polymerization and microfibril formation. Journal of Cell Biology 87(2):442-450. https//doi.org/10.1083/jcb.87.2.442
Hetherington AM, Woodward FI (2003). The role of stomata in sensing and driving environmental change. Nature 424:901-908. https://doi.org/10.1038/nature01843
Hofmann J, Mohamed Youssef-Banora, de Almeida-Engler J, Grundler FMW (2010). The role of callose deposition along plasmodesmata in nematode feeding sites. Molecular Plant-Microbe Interactions 23(5):549-557. https://doi.org/10.1094/MPMI-23-5-0549
Hong Z, Delauney AJ, Verma D (2001 a). A cell plate specific callose synthase and its interaction with phragmoplastin. Plant Cell 13(4):755-768. https://doi. org/10.1105/tpc.13.4.755
Hong Z, Zhang Z, Olson J.M, Verma DP (2001b). A novel UDP-glucose transferase is part of the callose synthase complex and interacts with phragmoplastin at the forming cell plate. Plant Cell 13(4):769-779. https://doi.org/10.1105/tpc.13.4.769
Jackson MB (2008). Ethylene-promoted elongation: an adaptation to submergence stress. Annals of Botany 101:229-248. https://doi.org/10.1093/aob/mcm237
Jackson MB, Armstrong W (1999). Formation of aerenchyma and the processes of plant ventilation in relation flooding and submergence. Plant Biology 1(3):274-287. https://doi.org/10.1111/j.1438-8677.1999.tb00253.x
Jackson MB, Colmer TD (2005). Response and adaptation by plants to flooding stress. Annals of Botany 96(4):501-505. https://doi.org/10.1093/aob/mci205
Jung J, Seung CL, Hong-Keun C (2008). Anatomical patterns of Aerenchyma in aquatic and wetland plants. Journal of Plant Biology 51(6):428-439. https://doi.org /10.1007/bf03036065
Karpati I, Karpati V, Volf F (1985). Role of water and wetland macrophytes in protection of water quality. Sbornik Vysoke Skoly Zemedelske v Praze, Fakulta Agronomicka pp 25-45.
Kaul RB (1976). Anatomical observations on floating leaves. Aquatic Botany 2:215-234. https://doi.org/10.1016/0304-3770(76)90022-X
Krzesłowska M (2011). The cell wall in plant cell response to trace metals: polysaccharide remodeling and its role in defense strategy. Acta Physiologiae Plantarum 33:35-51. https://doi.org/10.1007/s11738-010-0581-z
Leisola M, Pastinen O, Axe DD (2012). Lignin—Designed. BIO-Complexity 3:1-11. https://doi.org/10.5048/BIO-C.2012.3
Little ST (2003). Adaptation and acclimation of populations of Ludwigia repens to growth in high- and lower CO2 springs. A Dissertation presented to the graduate school of the University of Florida in partial fulfillment of the requirements for the degree of doctor of philosophy. USA: University Florida, pp 1-157.
Ma JF, Yamaji N, Mitani-Ueno N (2011). Transport of silicon from roots to panicles in plants. Proceedings of the Japan Academy, Ser B, Physical and Biological Sciences 87:377–385.
Majewska‐Sawka A, Agnieszka Münster, Rodríguez‐García MI (2002). Guard cell wall: immunocytochemical detection of polysaccharide components. Journal of Experimental Botany 53(371):1067-1079. https://doi.org/10.1093/jexbot/53.371.1067
Malavasi UC, Davis AS, Malavasi MM (2016). Lignin in woody plants under water stress: a review. Floresta e Ambiente 23:589-597. https://doi.org/10.1590/2179-8087.143715
Menden B, Kohlhoff M, Moerschbacher BM (2007). Wheat cell accumulate a syringil-rich lignin during the hypersensitive resistance response. Phytochemistry 68:513-529. https://doi.org/10.1016/j.phytochem.2006.11.011
Meusel H, Jäger EJ (1992). (Hrsg.) Vergleichende Chorologie der Zentraleuropäischen Flora, Band III. Mit Beiträgen von S. Bräutigam; H.-D. Knapp; S. Rauschert; E. Weinert. Unter Mitarbeit von D. Seidel und J. Stölzer und Fachwissenschaftlern aus 20 Ländern. In zwei Teilen: Textband: 333 S.; Kartenband; Karten, Literatur und Gesamtregister, 688 S., Gustav Fischer Verlag, Jena.
Monks A, Lishawa S, Wellons KC, Albert DA, Mudrzynski B, Douglas WA (2019). European frogbit (Hydrocharis morsus-ranae) invasion facilitated by non-native cattails (Typha) in the Laurentian Great Lakes. Journal of Great Lakes Research 1-9. https://doi.org/10.1016/j.jglr.2019.07.005
Monties B, Fukushima K (2001). Occurrence, function and biosynthesis of lignins. In: Hofrichter M, Steinbuchel A (Eds). Biopolymers. Lignin, humic substances and coal. Wiley, Weinheim, pp 1-64. https://doi.org/10.1002/3527600035.bpol1001
Nedukha OM (2010a). Epidermis leaf structural responses of some aquatic plants to constant water environment. Advances of Agricultural Sciences, Problem Issue 545:169-178.
Nedukha OM (2010b). Features of the structure of epidermal cells of underwater leaves of some hydrophytes. Reports of the National Academy of Sciences of Ukraine N 11:143-147.
Nedukha OM (2015). Cell wall of plant and environment. Kiev, Alterpress. ISBN 978-966-542-575-5.
Nedukha OM, Kordyum EL (2013). The participation of cell wall polysaccharides in cellular mechanisms of leaf tolerance to nature flooding of plants. In: Grzesiak MC, Rzepka A, Hura T, Grzesiak S (Eds). Plant functions under environmental stress. Gorski Institute of Plant Physiology, Polish Acad. Sci., pp 137-152.
Nilsson M (2006). Water-induced charge transport in microcrystalline cellulose. Acta Universitatis Upsaliensis. Uppsala Universitet 170:1-54.
Panda D, Sarkar RK (2013). Structural carbohydrates and lignifications associated with submergence tolerance in race (Oryza sativa L.). Journal of Stress Physiology and Biochemistry 9:299-306.
Parre E, Geitmann A (2005). More than a leak sealant. The mechanical properties of callose in pollen tubes. Plant Physiology 137:274-286. https://doi.org/10.1104/pp.104.050773
Parent C, Capelli N, Berger A, Crèvecoeur M, Dat JF (2008). An overview of plant responses to soil waterlogging. Plant Stress 2(1):20-27.
Cook CK, Lüönd R (1982). A revision of the genus Hydrocharis (Hydrocharitaceae). Aquatic Botany 14:177 204. https://doi.org/10.1016/0304-3770(82)90097-3
Pirselova B, Mistrıkova V, Libantova J, Moravcıkova J, Matusıkova I (2012). Study on metal-triggered callose deposition in roots of maize and soybean. Biologia 67(4):695-705. ISSN: 0006-3088.
Ridley BL, O’Neil MA, Mohnen D (2001). Pectins: structure, biosynthesis, and oligogalacturonade-related signaling. Phytochemistry 57(6):929-967. https://doi.org/10.1016/s0031-9422(01)00113-3
Sangster AG, Hodson MJ, Tubb HJ (2001). Silicon deposition in higher plants. In: Datnoff LD, Snyder GH, Korndörfer GH (Eds). Silicon in Agriculture. Amsterdam: Elsevier Science B.V. III Silicon in Agricuture Conference, 22-26 October 2005, Brazil, Uberlanda, pp 85-114.
Schuetz M, Benske A, Smith RA, Watanabe Y, Tobimatsu Y, Rajph J, Demura EB, Samuelas AL (2015). Laccases direct lignification in the discrete secondary cell wall domains of protoxylem. Plant Physiology 166:798-807. https://doi.org/10.1104/pp.114.245597
Sinescu I, Toma K (2007). Morpho-structural adaptations of some aquatic Carnivorus plant species (Aldrovanda vesiculosa L. and Ultricularia vulgaris L.). Buletinul Grdinii Botanice IA. Editura Universitii “Alexandru Ioan Cuza” 14:7-12.
Skwierawski A, Skwierawska M (2013). The Role of Hydrocharitetum morsus-ranae in shaping the chemical composition of surface waters. Polish Journal of Environmantal Studies 22(6):1825-1833. https://www.researchgate.net/publication/259935946
Sviridenko VG, Lapittskaya SK, Avseenko SV, Tolkachev VI (1988). Chemical characterization of aquatic plants and helophytes eaten by the European beaver. Rastitel’nye Resursy 23:621-625.
Vartapetian BB, Jackson MB (1997). Plant adaptations to anaerobic stress. Annals of Botany 79(A):3-20. http://www.jstor.org/stable/42764824
Wang L, Nie Q, Li M, Zhang F, Zhuang J, Yang W, ... Wang Y (2005). Biosilicified structures for cooling plant leaves: a mechanism of highly efficient midinfrared thermal emission. Applied Physics Letters 87(19). https://doi.org/10.1063/1.2126115)
Willats WGT, McCartney L, Mackie W, Knox JP (2001). Pectin: cell biology and prospects for functional analysis. Plant Molecular Biology 47(4):9-27.
Wuyts N, Lognay G, Swennen R, De Waele D (2005). Secondary Metabolites in Roots and Implications for nematode resistance in banana (Musa spp.). In: Book chapter; Conference paper: Banana root system: towards a better understanding for its productive management. Proceedings of an International Symposium held in San José, Costa Rica on 3-5 November, pp 238-246.
Xie B, Hong Z (2011). Unplugging the callose plug from sieve pores. Plant Signaling & Behavior 6(4):491-493. https://doi.org/10.4161/psb.6.4.14653
Zenoni S, Reale L, Tornielli GB, Lanfaloni L, Porceddu A, Ferrarini A, ... Pezzotti M (2004). Downregulation of the Petunia hybrida α-expansin gene PhEXP1 reduces the amount of crystalline cellulose in cell walls and leads to phenotypic changes in petal limbs. The Plant Cell 16(2):295-308. https://doi.org/10.1105/tpc.018705
Zhu B, Ottaviani CC, Naddafi R, Dai Z, Du D (2018). Invasive European frogbit (Hydrocharis morsus-ranae L.) in North America: an updated review 2003–16. Journal of Plant Ecology 11(1):17-25. https://doi.org/10.1093/jpe/rtx031

Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Olena M. NEDUKHA

This work is licensed under a Creative Commons Attribution 4.0 International License.
Papers published in Notulae Scientia Biologicae are Open-Access, distributed under the terms and conditions of the Creative Commons Attribution License.
© Articles by the authors; licensee SMTCT, Cluj-Napoca, Romania. The journal allows the author(s) to hold the copyright/to retain publishing rights without restriction.
License:
Open Access Journal - the journal offers free, immediate, and unrestricted access to peer-reviewed research and scholarly work, due SMTCT supports to increase the visibility, accessibility and reputation of the researchers, regardless of geography and their budgets. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author.