Seed dormancy mechanism and dormancy-breaking methods in wild raspberry (Rubus fraxinifolius Poir.)
DOI:
https://doi.org/10.55779/nsb15411675Keywords:
after-ripening, cytokinin, hard-seed, scarification, seeds, seed-coatAbstract
Raspberries are subtropical plants that contain high levels of vitamin C, antibacterial and anti-inflammatory. They can potentially be developed as horticultural and medicinal plants. Dormancy is a challenge in the cultivation of raspberries (Rubus fraxinifolius Poir.). This study was conducted as two separate experiments. The first experiment aimed to identify the dormancy mechanism of R. fraxinifolius seed. In a two-factor factorial design, the first factor was seed storage, as unstored and three-month-stored, and the second factor was chemical-immersed treatment consisting of control, H2SO4, acetone, GA3, KNO3, H2SO4-GA3, acetone-GA3, H2SO4-KNO3, acetone-KNO3. The second experiment was aimed at determining dormancy-breaking methods for R. fraxinifolius seeds. In main plots were filter paper and cocopeat germination substrates. The subplots included control, immersed with distilled water, H2SO4, ultrafine bubble water, and temperature treatment at −80 °C, 50 °C, and 70 °C. The germination of unstored and three-month-stored seeds increased after H2SO4 treatment (36 to 82% and 82 to 94%, respectively). Seed germination increased after three months of storage. There was an increase in cytokinin hormone levels along with germination enhancement. The seeds went into physical dormancy because their seed coat was hard, and they went into physiological dormancy because of low cytokinin concentration. Stratification at 50 °C increased germination (78.5 to 93.0%), reduced dormancy intensity (15 to 6.5%), and increased the percentage of the speed of germination (1.99 to 3.12 ) on filter paper substrate.
Metrics
References
Abadi NEM, Kaboli SH (2020). Effect of different times and KNO3 concentrations on Silybum marianum seedling enhancement. Journal of Medicinal Plants and By-products 9(1):51-58. https://doi.org/10.22092/JMPB.2020.122074
Al-Namazi AA, Al-Ammari BS, Davy AJ (2020). Seed dormancy and germination in Dodonaea viscosa (Sapindaceae) from south-western Saudi Arabia. Saudi Journal of Biological Sciences 27(9):2420-2444. https://doi.org/10.1016/j.sjbs.2020.05.036
Araujo S, Pagano A, Dondi D, Lazzaroni S, Pinela E, Macovei A, Balestrazzi A (2019). Metabolic signatures of germination triggered by kinetin in Medicago truncatula. Scientific Reports 9:1-13. https://doi.org/10.1038/s41598-019-46866-6
Baskin CC, Baskin JM (2014). Seeds ecology, biogeography, and evolution of dormancy and germination. Elsevier Science (2nd ed), United Kingdom.
Carvalho E, Fraser PD, Martens S (2013). Carotenoids and tocopherols in yellow and red raspberry. Food Chemistry 139(14):744-752. https://doi.org/10.1016/j.foodchem.2012.12.047
Cavusoglu K, Cadil S, Cavusoglu D (2017). Role of Potassium Nitrate (KNO3) in alleviation of detrimental effects of salt stress on some physiological and cytogenetical parameters in Allium cepa L. Cytologia 82(3):279-286. https://doi.org/10.1508/cytologia.82.279
Chaodumrikul S, Kaewsorn P, Chulaka P, Chanprasert W (2016). Breaking seed dormancy in smooth loofah (Luffa cylindrica (L.) M. Roem.) using scarification and dry heat treatment. Agriculture and Natural Resources 50(2):85-88. https://doi.org/10.1016/j.anres.2015.09.003
Chen X, Kameshwar APKS, Chio C, Lu F, Qin W (2019). Effect of KNO3 on lipid synthesis and CaCO3 accumulation in pleurochrysis dentata coccoliths with a special focus on morphological characters of Coccolithophores. International Journal of Biological Sciences 15(13):2844-2858. https:/doi.org/10.7150/ijbs.35664
Choi GE, Ghimire B, Lee H, Jeong MJ, Kim HJ, Ku JJ, Lee KM, Son SW, Lee CH, Park JI, Suh GU (2016). Scarification and stratification protocols for breaking dormancy of Rubus (Rosaceae) species in Korea. Seed Science and Technology 44(2):239-252. https://doi.org/10.15258/sst.2016.44.2.06
Contreras E, Grez J, Gambardella M (2016). Scarification and stratification protocols for raspberry (Rubus idaeus L.) seed germination. Acta Horticultura 1133:153-158. https://doi.org/10.17660/ActaHortic.2016.1133.23
De-Paula AS, Delgado CM, Paulilo MTS, Santos M (2012). Breaking physical dormancy of Cassia leptophylla and Senna macranthera (Fabaceae: Caesalpinioideae) seeds: water absorption and alternating temperatures. Seed Science Research 22(4):259-267. https://doi.org/10.1017/S096025851200013X
Desmiaty Y, Mulatsari E, Saputri FC, Hanafi M, Prastiwi R, Elya B (2020). Inhibition of pancreatic elastase in silico and in vitro by R. rosifolius leaves extract and its constituents. Journal of Pharmacy and Bioallied Sciences 12(3):317-323. https://doi.org/10.4103/jpbs.JPBS_271 19
Dincer D (2023). Determination of optimal plant growth regulators for breaking seed dormancy and micropropagation of Sorbus aucuparia L. Baltic Forestry 29(1):1-9. https://doi.org/10.46490/BF679
Erickson TE, Merritt DJ, Turner SR (2016). Overcoming physical seed dormancy in priority native species for use in arid-zone restoration programs. Australian Journal of Botany 64(55):401-416. https://doi.org/10.1071/BT16059
Eyob S (2009). Promotion of seed germination, subsequent seedling growth and in vitro propagation of A. corrorima (Braun) P. C. M. Jansen. Journal of Medicinal Plants Research 3(9):652-659. https://doi.org/10.5897/JMPR.9001052
Farooq MA, Zhang X, Zafar MM, Ma W, Zhao J (2021). Roles of reactive oxygen species and mitochondria in seed germination. Front Plant Science 12:1-11. https://doi.org/10.3389/fpls.2021.781734
Fridayanti N, Widajati E, Ilyas S, Budi SR, Palupi ER (2023). Phenology of flowering and seed development of jernang rattan (Daemonorops spp.). Biodiversity 24(1):349-358. https://doi.org/10.13057/biodiv/d240142
Fuentes L, Figueroa CR, Valdenegro M (2019). Recent advances in hormonal regulation and cross-talk during non-climacteric fruit development and ripening. Horticulturae 5(2):1-28. https://doi.org/10.3390/horticulturae5020045
Gbenou P, Hombada D, Nevis DR (2021). Evaluation of the effect of pre-treatment of moringa oleifera lamarck (Moringaceae) seeds at the early stage of germination for massive production in south benin. European Scientific Journal 17(3):165-175. https://doi.org/10.19044/esj.2021.v17n3p165
Ge W, Steber CM (2018). Positive and negative regulation of seed germination by the Arabidopsis GA hormone receptors, GID1a, b, and c. Plant Direct 2(9):1-10. https://doi.org/10.1002/pld3.83
Geisler, GE, Pinto T, Santos M, Paulilo MTS (2017). Seed structures in water uptake, dormancy release, and germination of two tropical forest Fabaceae species with physically dormant seeds. Brazilian Journal of Botany 40:67-77. https://doi.org/10.1007/s40415-016-0334-3
Guan C, Wang X, Feng J, Hong S, Liang Y, Ren B, Zuo J (2014). Cytokinin antagonizes abscisic acid-mediated inhibition of cotyledon greening by promoting the degradation of abscisic acid insensitive5 protein in Arabidopsis. Plant Physiology 164(3):1515-1526. https://doi.org/10.1104/pp.113.234740
Haq N, Ilyas S, Suhartanto MR and Purwanto YA (2023). Dormancy behaviour and effectiveness of dormancy breaking methods in cucumber seeds (Cucumis sativus). Seed Science and Technology 51(2):205-219. https://doi.org/10.15258/sst.2023.51.2.06
Haraz TH, Bowtell L, Al-Juboori R (2020). Biochar effects on nutrients retention and release of hydroponics growth media. Journal of Agricultural Science 12(8):1-13. https://doi.org/10.5539/jas.v12n8p1
ISTA - International Seed Testing Asscosiation (2014). International rules for seed testing. Basserdorf, Switzerland.
Jaganathan GK, Wu G, Han Y, Liu B (2016). Role of lens in controlling the physical dormancy break and germination of Delonix regia (Fabaceae: Caesalpinioideae). Plant Biol (Stuttg) 19(1):53-60. https://doi.org/10.1111/plb.12451
Kaya C, Akram NA, Ashraf M (2018). Kinetin and indole acetic acid promote antioxidant defense system and reduce oxidative stress in maize (Zea mays L.). Journal of Plant Growth Regulation 37(4):1258-1266. https://doi.org/10.1007/s00344-018-9827-6
Kelly A, Lacroix C (2019). Effects of seed age and dormancy-breaking treatments on the viability and germination of the gulf of saint lawrence aster (Symphyotrichum laurentianum). Botany 97(12):699-705. https://doi.org/10.1139/cjb-2019-0049
Khan MA, Ishaque M, Zia M, Uddin S (2015). Response of sunflower to various pre-germination techniques for breaking seed dormancy. Pakistan Journal of Botany 47(2):413-416.
Kołodziejek J, Patykowski J, Wala M (2019). Dormancy, germination, and sensitivity to salinity stress in five species of Potentilla (Rosaceae). Botany 97(8):1-9. https://doi.org/10.1139/cjb-2019-0038
Kurdi RHS, Al-Zebari SMK (2022). Effect of growth regulators on seedlings growth of apricot (Prunus armeniaca L.). Journal of University of Duhok 25(2):170-179. https://doi.org/10.26682/ajuod.2022.25.2.15
Leubner-Metzger G (2002). Seed after-ripening and over-expression of class I β-1,3 glucanase confer maternal effects on tobacco testa rupture and dormancy release. Planta 215(6):959-968. https://doi.org/10.1007/s00425-002-0837-y
Maia J, Qadir A, Widajati E, Purwanto YA (2020). Teknologi ultrafine bubbles untuk pematahan dormansi benih cendana (Santalum album L.) [Ultrafine bubbles technology for breaking dormancy of sandalwood seeds (Santalum album L.]. Jurnal Perbenihan Tanaman Hutan 9 (1):27-41. https://doi.org/10.20886/bptpth.2021.9.1.27-41
Marcos-Filho J (2016). Seed physiology of cultivated plants. Abrates Press (2nd ed), Brasil.
Monpara JK, Chudasama KS, Thaker VS (2019). Role of phytohormones in soybean (Glycine max) seed development. Russian Journal of Plant Physiology 66(6):992-998. https://doi.org/10.1134/S1021443719060098
Musara C, Chitamba J, Nhuvira C (2015). Evaluation of different seed dormancy breaking techniques on okra (Abelmoschus esculentus L.) seed germination. African Journal of Agricultural Research 10(17):1952-1956. https://doi.org/10.5897/AJAR2014.9181
Nimir NEA, Guisheng Z, Guo WS, Ma B, Shiyuan L, Yonghui W (2016). Effect of foliar application of GA3, kinetin, and salicylic acid on ions content, membrane permeability and photosynthesis under salt stress of sweet sorghum. Canadian Journal of Plant Science 97(3):1-11. https://doi.org/10.1139/cjps-2016-0110
Rehman S, Choi H, Jamil M, Yun SJ (2011). Effect of GA and ABA on germination behavior of black raspberry (R. coreanus miquel) seeds. Pakistan Journal of Botany 43(6):2811-2816.
Sadjad S (1994). Kuantifikasi metabolisme benih. Gramedia Widiasarana Indonesia, Jakarta.
Saeid A, Chojnacka K (2014). Encyclopedia of toxicology. Academic press (3rd ed), United Kingdom.
Saffari P, Majd A, Jonoubi P, Najafi F (2021). Effect of treatments on seed dormancy breaking, seedling growth, and seedling antioxidant potential of Agrimonia Eupatoria L. Journal of Applied Research on Medicinal and Aromatic Plants 20(12):1-7. https://doi.org/10.1016/j.jarmap.2020.100282
Sari M, Ilyas S, Suhartanto RM (2021). Pre-harvest sprouting on high-level seed dormancy of bambara groundnut (Vigna subterranea) landraces. Biodiversity 22(12):5617-5623. https://doi.org/10.13057/biodiv/d221247
Shu K, Liu X, Xie Q, He Z (2016). Two faces of one seed: Hormonal regulation of dormancy and germination. Molecular Plant 9(1):34–45. https://doi.org/10.1016/j.molp.2015.08.010
Surya MI, Suhartati S, Ismaini L, Lusini Y, Destri, Anggraeni…Sidiq MAB (2018). Fruit nutrients of five species of wild Raspberry (Rubus spp.) from Indonesian mountain’s forests. Journal of Tropical Life Science 8(1):75-80. https://doi.org/10.11594/jtls.08.01.13
Taghizadeh M, Sajadi FS (2023). Effect of dormany breaking methods on germination of C.siliquastrum and S.junceum and seedling growth. Ornamental Horticulture 29(1):28-36. https://doi.org/10.1590/2447-536X.v29i1.2528
Tang Y, Zhang K, Zhang Y, Tao J (2019). Dormancy-breaking and germination requirements for seeds of Sorbus alnifolia (Siebold & Zucc.) K.Koch (Rosaceae), a mesic forest tree with high ornamental potential. Forests 10(4):319-331. https://doi.org/10.3390/f10040319
Tank JG, Pandya RV, Thaker VS (2014). Phytohormones in regulation of the cell division and endoreduplication process in the plant cell cycle. RSC Advances 4(24):12605-12613. https://doi.org/10.1039/C3RA45367G
Thapliyal M, Kaliyathan NN, Rathore K (2021). Seed germination response of Indian wild pear Seed germination response of Indian wild pear Indian wild pear (Pyrus pashia) to gibberellic acid treatment and cold storage. Notulae Scientia Biologicae 13(4):1-10. https://doi.org/10.15835/nsb13411044
Todorovic S, Giba Z, Zivkovic S, Grubisic D, Konjevic R (2005). Stimulation of empress tree seed Germination by Liquid Smoke. Plant Growth Regulation 47(2):141-148. https://doi.org/10.1007/s10725-005-3253-z
Visscher AM, Yeo M, Gomez BP, Stuppy W, Latorre FA, Di-Sacco A… Pritchard HW (2018). Dry heat exposure increases hydrogen peroxide levels and breaks physiological seed coat-imposed dormancy in Mesembryanthemum crystallinum seeds. Environmental and Experimental Botany 155(6):272-280. https://doi.org/10.1016/j.envexpbot.2018.07.009
Wada S, Reed BM (2011). Standardizing germination protocols for diverse raspberry and blackberry species. Sci Hortic 132:42-49. https://doi.org/10.1016/j.scienta.2011.10.002
Wang K, Zhang N, Fu X, Zhang H, Liu S, Pu X…Si H (2022). StTCP15 regulates potato tuber sprouting by modulating the dynamic balance between abscisic acid and gibberellic acid. Front Plant Science 13:1-15. https://doi.org/10.3389/fpls.2022.1009552
Yuniarti N, Megawati, Leksono B (2017). Pengaruh metode perkecambahan dan substrat kertas terhadap viabilitas benih Eucalyptus pellita F. Mull [The effect of method and germination paper substrate on viability of eucalyptus pellita F. mull seed]. Jurnal Penelitian Kehutanan Wallacea 6(1):13-19. http://dx.doi.org/10.18330/jwallacea.2017.vol6iss1pp13-19
Zhu G, An L, Jiao X, Chen X, Zhou G, Mc-Laughlin (2018). Effects of gibberellic acid on water uptake and germination of sweet sorghum seeds under salinity stress. Chilean journal of agricultural research 79(3):415-424. http://dx.doi.org/10.4067/S0718-58392019000300415
Zurawicz E, Masny A, Kubik J, Lewandowski M (2017). Germination of red raspberry seeds as affected by origin and chemical scarification. Horticural Science 44(3):133-140. http://doi.org/10.17221/22/2016-HORTSCI
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Hatika RAHMAWAN, Abdul QADIR, Maryati SARI, Muhammad Imam SURYA
This work is licensed under a Creative Commons Attribution 4.0 International License.
Papers published in Notulae Scientia Biologicae are Open-Access, distributed under the terms and conditions of the Creative Commons Attribution License.
© Articles by the authors; licensee SMTCT, Cluj-Napoca, Romania. The journal allows the author(s) to hold the copyright/to retain publishing rights without restriction.
License:
Open Access Journal - the journal offers free, immediate, and unrestricted access to peer-reviewed research and scholarly work, due SMTCT supports to increase the visibility, accessibility and reputation of the researchers, regardless of geography and their budgets. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author.