Effectiveness of foliar application of biostimulants and nanoparticles on growth, nitrogen assimilation and nutritional content in green bean

  • Miriam AGÜERO-ESPARZA Universidad Autónoma de Chihuahua, Facultad de Ciencias Agrícolas y Forestales, Km. 2.5 carretera a Rosales, Poniente, 33000 Delicias, Chihuahua (MX)
  • Octavio VILLALOBOS-CANO Universidad Autónoma de Chihuahua, Facultad de Ciencias Agrícolas y Forestales, Km. 2.5 carretera a Rosales, Poniente, 33000 Delicias, Chihuahua (MX)
  • Esteban SÁNCHEZ Centro de Investigación en Alimentación y Desarrollo A.C. Unidad Delicias, Av. 4 Sur 3828, Pablo Gómez, 33088 Delicias, Chihuahua (MX)
  • Sandra PÉREZ-ÁLVAREZ Universidad Autónoma de Chihuahua, Facultad de Ciencias Agrícolas y Forestales, Km. 2.5 carretera a Rosales, Poniente, 33000 Delicias, Chihuahua (MX)
  • Juan Pedro SIDA-ARREOLA Universidad Tecnológica de Camargo Unidad Meoqui, C. Julio César, J. C. Viramontes 237, Zona Industrial, 33130 Pedro Meoqui, Chihuahua (MX)
  • Alejandro PALACIO-MÁRQUEZ Centro de Investigación en Alimentación y Desarrollo A.C. Unidad Delicias, Av. 4 Sur 3828, Pablo Gómez, 33088 Delicias, Chihuahua (MX)
  • Carlos Abel RAMÍREZ-ESTRADA Centro de Investigación en Alimentación y Desarrollo A.C. Unidad Delicias, Av. 4 Sur 3828, Pablo Gómez, 33088 Delicias, Chihuahua (MX)
Keywords: chitosan, nanofertilizer, Phaseolus vulgaris L, salicylic acid


The use of biostimulants, such as salicylic acid (SA) and chitosan, are a sustainable strategy to solve stress problems in plants. Its use has been shown to have synergy with metallic microelements, which are very important for the development of crops under stress situations. An advance in the application of these nutrients is the use of nanoparticles, which emerge as a more precise alternative to achieve optimal plant development. The objective of this study was to evaluate the effect of foliar application of biostimulants, iron (Fe) and zinc (Zn) nanoparticles on growth, nitrogen assimilation, and nutritional content in green bean cv. ‘Strike’. Three treatments were used where complete nutrient solution was applied via foliar, the combination of chitosan (Q) plus SA and nanoparticles of Fe and Zn plus Q and SA. The application of nutrient solution favoured biomass content and carotene content. While the Q+SA treatment increased the nitrate reductase enzymatic activity, the mineral content in the root and the amino acid content, which places it as a viable alternative in situations where the supply of nutrients is limited or the plant cope with stressful situations. For its part, the application of nanoparticles of Fe and Zn plus biostimulants generated an increase in the mineral content of the aerial part, indicating that the application of this type of compound generates a greater mobility of nutrients within the plant.


Metrics Loading ...


Abbasifar A, ValizadehKaji B, Iravani MA (2020). Effect of green synthesized molybdenum nanoparticles on nitrate accumulation and nitrate reductase activity in spinach. Journal of Plant Nutrition 43(1):13-27. https://doi.org/10.1080/01904167.2019.1659340

Abdoli S, Ghassemi-Golezani K, Alizadeh-Salteh S (2020). Responses of ajowan (Trachyspermum ammi L.) to exogenous salicylic acid and iron oxide nanoparticles under salt stress. Environmental Science and Pollution Research 27(29):36939-36953. https://doi.org/10.1007/s11356-020-09453-1

Amiri A, Esmaeilzadeh-Bahabadi S, Yadollahi-Dehcheshmeh P, Sirousmehr A (2017). The Role of Salicylic Acid and Chitosan Foliar Applications‎ under Drought Stress Condition on Some Physiological Traits‎ and Oil Yield of Safflower (Carthamus tinctorius L.)‎. Journal of Crop Ecophysiology 11(41(1)):69-84.

Assad ED, Ribeiro RRR, Nakai AM (2019). Assessments and how an increase in temperature may have an impact on agriculture in Brazil and mapping of the current and future situation. In: Nobre C, Marengo J, Soares W (Eds). Climate change risks in Brazil. Springer, Cham. pp 31-65. https://doi.org/10.1007/978-3-319-92881-4_3

Basit A, Alam M, Ahmad I, Ullah I, Alam N, Ullah I, ul Ain N (2020). Efficacy of chitosan on performance of tomato (Lycopersicon esculentum L.) plant under water stress condition. Pakistan Journal of Agricultural Research 33(1):27-41. http://doi.org/10.17582/journal.pjar/2020/

Bramley PM (2013). Carotenoid biosynthesis and chlorophyll degradation. In: Seymour GB, Poole M, Giovannoni JJ, Tucker GA (Eds). The molecular biology and biochemistry of fruit ripening. John Wiley & Sons, Inc. pp 75-116. https://doi.org/10.1002/9781118593714.ch4

Calvo NIR, Echeverría HE, Rozas HS (2008). Comparación de métodos de determinación de nitrógeno y azufre en planta: Implicancia en el diagnóstico de azufre en trigo [Comparison of methods for determining nitrogen and sulfur in plants: Implication in the diagnosis of sulfur in wheat]. Ciencia del Suelo 26:161-167.

Choudhary RC, Kumaraswamy RV, Kumari S, Sharma SS, Pal A, Raliya R, Saharan V (2017). Cu-chitosan nanoparticle boost defense responses and plant growth in maize (Zea mays L.). Scientific Reports 7(1):1-11. https://doi.org/10.1038/s41598-017-08571-0

Choudhary RC, Kumaraswamy RV, Kumari S, Sharma SS, Pal A, Raliya R, Saharan V (2019). Zinc encapsulated chitosan nanoparticle to promote maize crop yield. International Journal of Biological Macromolecules 127:126-135. https://doi.org/10.1016/j.ijbiomac.2018.12.27

De Ron AM, Papa R, Bitocchi E, González AM, Debouck DG, Brick MA, ... Casquero PA (2015). Common bean. In: De Ron, A. (ed). Grain legumes. Handbook of Plant Breeding, vol 10. Springer, New York, NY, pp 1-36. https://doi.org/10.1007/978-1-4939-2797-5_1

Dhoke SK, Mahajan P, Kamble R, Khanna A (2013). Effect of nanoparticles suspension on the growth of mung (Vigna radiata) seedlings by foliar spray method. Nanotechnology Development 3(1):e1. https://doi.org/10.4081/nd.2013.e1

Dimkpa CO, White JC, Elmer WH, Gardea-Torresdey J (2017). Nanoparticle and ionic Zn promote nutrient loading of sorghum grain under low NPK fertilization. Journal of agricultural and food chemistry 65(39):8552-8559. https://doi.org/10.1021/acs.jafc.7b02961

Durigon A, Evers J, Metselaar K, and de Jong-van Lier Q (2019). Water stress permanently alters shoot architecture in common bean plants. Agronomy 9(3):160. https://doi.org/10.3390/agronomy9030160

El-Bassiony AM, Fawzy ZF, El-Baky MA, Mahmoud AR (2010). Response of snap bean plants to mineral fertilizers and humic acid application. Research Journal of Agriculture and Biological Sciences 6(2):169-175.

Elemike EE, Uzoh IM, Onwudiwe DC, Babalola OO (2019). The role of nanotechnology in the fortification of plant nutrients and improvement of crop production. Applied Sciences 9(3):499. https://doi.org/10.3390/app9030499

El-kenawy MA (2017). Effect of chitosan, salicylic acid and fulvic acid on vegetative growth, yield and fruit quality of Thompson seedless grapevines. Egyptian Journal of Horticulture 44(1):45-59. https://doi.org/10.21608/ejoh.2017.1104.1007

El-Ramady H, Abdalla N, Alshaal T, El-Henawy A, Elmahrouk M, Bayoumi Y, Domokos-Szabolcsy É (2018). Plant nano-nutrition: perspectives and challenges. In: Gothandam K, Ranjan S, Dasgupta N, Ramalingam C, Lichtfouse E (Eds). Nanotechnology, Food Security and Water Treatment. Springer, Cham. pp 129-161. https://doi.org/10.1007/978-3-319-70166-0_4

Esyanti RR, Dwivany FM, Mahani S, Nugrahapraja H, Meitha K (2019). Foliar application of chitosan enhances growth and modulates expression of defense genes in chilli pepper (Capsicum annuum L.). Australian Journal of Crop Science 13(1):55-60.

Fageria NK, Filho MB, Moreira A, Guimarães CM (2009). Foliar fertilization of crop plants. Journal of plant nutrition 32(6):1044-1064. https://doi.org/10.1080/01904160902872826

Farouk S, Mosa AA, Taha AA, El-Gahmery AM (2011). Protective effect of humic acid and chitosan on radish (Raphanus sativus, L. var. sativus) plants subjected to cadmium stress. Journal of Stress Physiology & Biochemistry 7(2):99-116.

FIRA (2019). Panorama Agroalimentario: Frijol. Fideicomisos Instituidos en Relación con la Agricultura. pp 1-37.

Hansen J, Sato M, Ruedy R (2012). Perception of climate change. Proceedings of the National Academy of Sciences 109(37):E2415-E2423. https://doi.org/10.1073/pnas.1205276109

Hasanuzzaman M, Nahar K, Bhuiyan TF, Anee TI, Inafuku M, Oku H, Masayuki-Fujita M (2017). Salicylic acid: an all-rounder in regulating abiotic stress responses in plants. In: El-Esawi MA (Ed). Phytohormones - Signaling Mechanisms and Crosstalk in Plant Development and Stress Responses. London, UK. IntechOpen, pp 31-75. https://doi.org/10.5772/intechopen.68213

Hayat Q, Hayat S, Alyemeni MN, Ahmad A (2012). Salicylic acid mediated changes in growth, photosynthesis, nitrogen metabolism and antioxidant defense system in Cicer arietinum L. Plant, Soil and Environment 58(9):417-423. https://doi.org/10.17221/232/2012-PSE

Hayat S, Ali B, Ahmad A (2007). Salicylic acid: biosynthesis, metabolism and physiological role in plants. In: Hayat S, Ahmad A (eds). Salicylic acid: A plant hormone. Springer, Dordrecht, pp 1-14. https://doi.org/10.1007/1-4020-5184-0_1

Hidangmayum A, Dwivedi P, Katiyar D, Hemantaranjan A (2019). Application of chitosan on plant responses with special reference to abiotic stress. Physiology and Molecular Biology of Plants 25(2):313-326. https://doi.org/10.1007/s12298-018-0633-1

Ismail M, Prasad R, Ibrahim AI, Ahmed AI (2017). Modern prospects of nanotechnology in plant pathology. In: Prasad R, Kumar M, Kumar V (Eds). Nanotechnology. Springer, Singapore. pp 305-317. https://doi.org/10.1007/978-981-10-4573-8_15

Jaleel CA, Manivannan P, Wahid A, Farooq M, Al-Juburi HJ, Somasundaram R, Panneerselvam R (2009). Drought stress in plants: a review on morphological characteristics and pigments composition. International Journal of Agriculture & Biology 11(1):100-105.

Janmohammadi M, Amanzadeh T, Sabaghnia N, Dashti S (2016). Impact of foliar application of nano micronutrient fertilizers and titanium dioxide nanoparticles on the growth and yield components of barley under supplemental irrigation. Acta Agriculturae Slovenica 107(2):265-276. http://dx.doi.org/10.14720/aas.2016.107.2.01

Jayakumar R, Selvamurugan N, Nair SKV, Tokura S, Tamura H (2008). Preparative methods of phosphorylated chitin and chitosan— An overview. International journal of biological macromolecules 43(3):221-225. https://doi.org/10.1016/j.ijbiomac.2008.07.004

Kannan S (2010). Foliar fertilization for sustainable crop production. In: Lichtfouse E (Ed). Genetic engineering, biofertilization, soil quality and organic farming. Lichtfouse E (Ed). Springer, Dordrecht. pp 371-402. https://doi.org/10.1007/978-90-481-8741-6_13

Kareem F, Rihan H, Fuller M (2017). The effect of exogenous applications of salicylic acid and molybdenum on the tolerance of drought in wheat. Agricultural Research & Technology 9(4):1-9. http://dx.doi.org/10.19080/artoaj.2017.09.555768

Khodary SEA (2004). Effect of salicylic acid on the growth, photosynthesis and carbohydrate metabolism in salt stressed maize plants. International Journal of Agriculture & Biology 6(1):5-8.

Kocira A, Lamorska J, Kornas R, Nowosad N, Tomaszewska M, Leszczyńska D, Tabor S (2020). Changes in biochemistry and yield in response to biostimulants applied in bean (Phaseolus vulgaris L.). Agronomy 10(2):189. https://doi.org/10.3390/agronomy10020189

Kruger NJ (2009). The Bradford method for protein quantitation. In: Walker JM (ed). The protein protocols handbook. Humana Press, Totowa, NJ, pp 17-24. https://doi.org/10.1007/978-1-59745-198-7_4

Kumar P, Sharma RK (2019). Development of SPAD value-based linear models for non-destructive estimation of photosynthetic pigments in wheat (Triticum aestivum L.). Indian Journal of Genetics and Plant Breeding 79(1):96-99.

Latique S, Chernane H, Mansori M, El Kaoua M (2013). Seaweed liquid fertilizer effect on physiological and biochemical parameters of bean plant (Phaesolus vulgaris variety Paulista) under hydroponic system. European Scientific Journal 9(30):174-191.

Llorente B, D'andrea L, Ruiz‐Sola MA, Botterweg E, Pulido P, Andilla J, Rodriguez‐Concepcion M (2016). Tomato fruit carotenoid biosynthesis is adjusted to actual ripening progression by a light‐dependent mechanism. Plant Journal 85(1):107-119. https://doi.org/10.1111/tpj.13094

Mahdi AH, Badawy SA, Abdel-Latef AAH, El Hosary AA, Abd El Razek UA, Taha RS (2021). Integrated effects of potassium humate and planting density on growth, physiological traits and yield of Vicia faba L. grown in newly reclaimed soil. Agronomy 11(3):461. https://doi.org/10.3390/agronomy11030461

Mahmoud AWM, Abdelaziz SM, El-Mogy MM, Abdeldaym EA (2019). Effect of foliar ZnO and FeO nanoparticles application on growth and nutritional quality of red radish and assessment of their accumulation on human health. Agriculture 65(1):16-29. https://doi.org/10.2478/agri-2019-0002

Malekpoor F, Ghasemi-Pirbalouti A, Salimi A (2016). Effect of foliar application of chitosan on morphological and physiological characteristics of basil under reduced irrigation. Journal of Research on Crops 17(2):354-359. https://doi.org/10.5958/2348-7542.2016.00060.7.

Marschner H (2011). Marschner's mineral nutrition of higher plants. Academic press, pp 684.

Marzouk NM, Abd-Alrahman, HA, EL-Tanahy AMM, Mahmoud SH (2019). Impact of foliar spraying of nano micronutrient fertilizers on the growth, yield, physical quality, and nutritional value of two snap bean cultivars in sandy soils. Bulletin of the National Research Centre 43(1):1-9. https://doi.org/10.1186/s42269-019-0127-5

Medina-Pérez G, Fernández-Luqueño F, Trejo-Téllez LI, López-Valdez F, Pampillón-González L (2018). Growth and development of common bean (Phaseolus vulgaris L.) var. pinto Saltillo exposed to iron, titanium, and zinc oxide nanoparticles in an agricultural soil. Applied Ecology and Environmental Research 16(2):1883-1897. http://dx.doi.org/10.15666/aeer/1602_18831897

Medina-Velo IA, Zuverza-Mena N, Tamez C, Ye Y, Hernandez-Viezcas JA, White JC, Gardea-Torresdey JL (2018). Minimal transgenerational effect of ZnO nanomaterials on the physiology and nutrient profile of Phaseolus vulgaris. ACS Sustainable Chemistry & Engineering 6(6):7924-7930. https://doi.org/10.1021/acssuschemeng.8b01188

Mills HA, Jones JB, Benton J (1996). Plant analysis handbook II. Athens, GA (EUA), pp 422.

Mitra GN (2015). Regulation of nutrient uptake by plants. New Delhi: Springer, pp 195. https://doi.org/10.1007/978-81-322-2334-4

Mondal MMA, Malek MA, Puteh AB, Ismail MR (2013). Foliar application of chitosan on growth and yield attributes of mungbean (Vigna radiata L. Wilczek). Bangladesh Journal of Botany 42(1):179-183. https://doi.org/10.3329/bjb.v42i1.15910

Morin-Crini N, Lichtfouse E, Torri G, Crini G (2019). Applications of chitosan in food, pharmaceuticals, medicine, cosmetics, agriculture, textiles, pulp and paper, biotechnology, and environmental chemistry. Environmental Chemistry Letters 17(4):1667-1692. https://doi.org/10.1007/s10311-019-00904-x

Nikolic M, Kastori R (2000). Effect of bicarbonate and Fe supply on Fe nutrition of grapevine. Journal of Plant Nutrition 23(11-12):1619-1627. https://doi.org/10.1080/01904160009382128

Palacio-Márquez A, Ramírez-Estrada CA, Sánchez E, Ojeda-Barrios DL, Chávez-Mendoza C, Sida-Arreola JP, Preciado-Rangel P (2022). Use of biostimulant compounds in agriculture: chitosan as a sustainable option for plant development. Notulae Scientia Biologicae 14(1):11124. https://doi.org/0.15835/nsb14111124

Pérez-Velasco EA, Valdez-Aguilar LA, Betancourt-Galindo R, Martínez-Juárez J, Lozano-Morales SA, González-Fuentes, JA (2021). Gas exchange parameters, fruit yield, quality, and nutrient status in tomato are stimulated by ZnO nanoparticles of modified surface and morphology and their application form. Journal of Soil Science and Plant Nutrition 21(2):991-1003. https://doi.org/10.1007/s42729-021-00416-0

Pichyangkura R, Chadchawan S (2015). Biostimulant activity of chitosan in horticulture. Scientia Horticulturae 196:49-65. https://doi.org/10.1016/j.scienta.2015.09.031

Raliya R, Saharan V, Dimkpa C, Biswas P (2017). Nanofertilizer for precision and sustainable agriculture: current state and future perspectives. Journal of agricultural and food chemistry 66(26):6487-6503. https://doi.org/10.1021/acs.jafc.7b02178

Roosta HR, Hamidpour M (2013). Mineral nutrient content of tomato plants in aquaponic and hydroponic systems: Effect of foliar application of some macro-and micro-nutrients. Journal of Plant Nutrition 36(13):2070-2083. https://doi.org/10.1080/01904167.2013.821707

Sánchez E, Rivero RM, Ruiz JM, Romero L (2004). Changes in biomass, enzymatic activity and protein concentration in roots and leaves of green bean plants (Phaseolus vulgaris L. cv. Strike) under high NH4NO3 application rates. Scientia Horticulturae 99(3-4):237-248. https://doi.org/10.1016/S0304-4238(03)00114-6

SAS (2004). The SAS® System for Windows®(Ver. 9.0).

Shrestha S, Brueck H, Asch F (2012). Chlorophyll index, photochemical reflectance index and chlorophyll fluorescence measurements of rice leaves supplied with different N levels. Journal of Photochemistry and Photobiology B: Biology 113:7-13. https://doi.org/10.1016/j.jphotobiol.2012.04.008

Smith MR, Guth S, Golden CD, Vaitla B, Mueller ND, Huybers P (2017). Climate change and global food systems: potential impacts on food security and undernutrition. Annual Review of Public Health 38:259-277. https://doi.org/10.1146/annurev-publhealth-031816-044356

Subbaiah LV, Prasad TNVKV, Krishna TG, Sudhakar P, Reddy BR, Pradeep T (2016). Novel effects of nanoparticulate delivery of zinc on growth, productivity, and zinc biofortification in maize (Zea mays L.). Journal of Agricultural and Food Chemistry 64(19):3778-3788. https://doi.org/10.1021/acs.jafc.6b00838

Tadros MJ, Omari HJ, Turk MA (2019). The morphological, physiological and biochemical responses of sweet corn to foliar application of amino acids biostimulants sprayed at three growth stages. Australian Journal of Crop Science 13(3):412-417.

Taiz L, Zeiger E (2004). Plant physiology. Sunderland: Sinauer Associate, pp 690.

Van Oosten MJ, Pepe O, De Pascale S, Silletti S, Maggio A (2017). The role of biostimulants and bioeffectors as alleviators of abiotic stress in crop plants. Chemical and Biological Technologies in Agriculture 4(1):1-12. https://doi.org/10.1186/s40538-017-0089-5

Vasconcelos MW (2014). Chitosan and chitooligosaccharide utilization in phytoremediation and biofortification programs: current knowledge and future perspectives. Frontiers in Plant Science 5:616. https://doi.org/10.3389/fpls.2014.00616

Waheed H, Javaid MM, Shahid A, Ali HH, Nargis J, Mehmood A (2019). Impact of foliar-applied Hoagland’s nutrient solution on growth and yield of mash bean (Vigna mungo L.) under different growth stages. Journal of Plant Nutrition 42(10):1133-1141. https://doi.org/10.1080/01904167.2019.1607380

Wellburn AR (1994). The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. Journal of Plant Physiology 144(3):307-313. https://doi.org/10.1016/S0176-1617(11)81192-2

Wolf B (1982). A comprehensive system of leaf analyses and its use for diagnosing crop nutrient status. Communications in Soil Science and Plant Analysis 13(12):1035-1059. https://doi.org/10.1080/00103628209367332

Yang X, Alidoust D, Wang C (2020). Effects of iron oxide nanoparticles on the mineral composition and growth of soybean (Glycine max L.) plants. Acta Physiologiae Plantarum 42(8):1-11. https://doi.org/10.1007/s11738-020-03104-1

Yi-Shen Z, Shuai S, Fitzgerald R (2018). Mung bean proteins and peptides: nutritional, functional and bioactive properties. Food & Nutrition Research 62:10. https://dx.doi.org/10.29219%2Ffnr.v62.1290

Zanganeh R, Jamei R, Rahmani F (2019). Role of salicylic acid and hydrogen sulfide in promoting lead stress tolerance and regulating free amino acid composition in Zea mays L. Acta Physiologiae Plantarum 41(6):1-9. https://doi.org/10.1007/s11738-019-2892-z

How to Cite
AGÜERO-ESPARZA, M., VILLALOBOS-CANO, O., SÁNCHEZ, E., PÉREZ-ÁLVAREZ, S., SIDA-ARREOLA, J. P., PALACIO-MÁRQUEZ, A., & RAMÍREZ-ESTRADA, C. A. (2022). Effectiveness of foliar application of biostimulants and nanoparticles on growth, nitrogen assimilation and nutritional content in green bean. Notulae Scientia Biologicae, 14(3), 11261. https://doi.org/10.55779/nsb14311261
Research articles
DOI: 10.55779/nsb14311261