Anatomical, physiological, biochemical and molecular responses of Eucalyptus spp. under water deficit conditions and characteristics of Tunisian arid species: an overview

Authors

  • Imen CHEMLALI 1University of Gabes, Faculty of Science Gabes, Gabes (TN)
  • Kaouther Ben YAHIA University of Carthage, I National Institute for Rural Engineering, Water and Forestry (INRGREF), LEF (TN)
  • Souda BELAÏD University of Gabes, Faculty of Science Gabes, Gabes; National Engineering School of Gabes, Laboratory of Energy, Water, Environment and Processes, Gabes (TN)
  • Sonia Ben RABEH University of Gabes, Faculty of Science Gabes, Gabes; National Engineering School of Gabes, Laboratory of Energy, Water, Environment and Processes, Gabes (TN)
  • Chokri Ben ROMDHANE University of Carthage, National Institute for Rural Engineering, Water and Forestry (INRGREF), LGVRF (TN)
  • Noomen MESSOUDI Commissariat Régional au Développement Agricole Gabès, CTV-Mareth, 6000 Gabes (TN)
  • Ezzeddine SAADAOUI University of Carthage, National Institute for Rural Engineering, Water and Forestry (INRGREF), LGVRF (TN)

DOI:

https://doi.org/10.55779/nsb14311218

Keywords:

drought, Eucalyptus, water deficit, tolerance mechanisms, Tunisian arid zones

Abstract

The genus Eucalyptus occurs in a large range of environmental conditions, mainly arid/semi-arid areas. It includes species with high capacity to survive with extremely low water potential. For that, our review shows an important effect of drought on Eucalyptus spp. plants’ resistance mechanisms and management strategies. In fact, water stress acts directly on growth, productivity, yield, it affects also response to pests and diseases, disturbs wood formation and essential oil yield. However, the general patterns of response to water stress varied among species, genotypes, hybrids and clones. To assume, reducing water loss in eucalyptus species is manifested by reducing leaves area, reducing gas exchange, increasing water uptake thanks to a prolific and deep root systems. A greater accumulation of osmolytes that gives rise to osmotic adjustment including carbohydrates especially cyclitols and quercitol, other amino acids and organic acids, also some proteins which play a vital role in sustaining cellular functions under drought conditions. More than that, water stress increases mainly the levels of pigments, chlorophyll fluorescence parameters, malondialdehyde (MDA), abscisic acid (ABA) and the biosynthesis of triacylglycerols (TAGs) in Eucalyptus species.

Metrics

Metrics Loading ...

References

Abed KM, Kurji BM, Abdul-Majeed BA (2015). Extraction and modelling of oil from Eucalyptus camadulensis by organic solvent. Journal of Materials Science and Chemical Engineering 03:35-42. https://doi.org/10.4236/msce.2015.38006

Agarwal PK, Jha B (2010). Transcription factors in plants and ABA dependent and independent abiotic stress signalling. Biologia Plantarum 54(2):201-212.

Amrutha S, Parveen ABM, Muthupandi M, Sivakumar V, Nautiyal R, Dasgupta MG (2019). Variation in morpho-physiological, biochemical and molecular responses of two Eucalyptus species under short-term water stress. Acta Botanica Croatica 78(2):125-134. https://doi.org/10.2478/botcro-2019-0021

Andrade A, Bonatto J, Salvato F, Camargo E, Boaretto L, Labate C (2007). Changes in the root proteome of Eucalyptus grandis in response to water stress. IUFRO Tree Biotechnology, Ponta Delgada, Azores, Portugal: pp SII 5.

Arend M, Fromm J (2007). Seasonal change in the drought response of wood cell development in poplar. Tree Physiology 27(7):985-992. https://doi.org/10.1093/treephys/27.7.985

Arnould P, Hotyat M (2003). Eau et environnement: Tunisie et milieux méditerranéens. ENS éditions.

Attia A, Nouvellon Y, Cuadra S, Cabral O, Laclau JP, Guillemot J, … le Maire G (2019). Modelling carbon and water balance of Eucalyptus plantations at regional scale: effect of climate, soil and genotypes. Forest Ecology and Management 449:117460. https://doi.org/10.1016/j.foreco.2019.117460

Ayepola OO, Adeniyi BA (2008). The antibacterial activity of leaf extracts of Eucalyptus camaldulensis (Myrtaceae). Journal of Applied Sciences Research 4(11):1410-1413.

Bande-Borujeni S, Zandi-Sohani N, Ramezani L (2018). Chemical composition and bioactivity of essential oil from Eucalyptus occidentalis leaves against two stored product pests. International Journal of Tropical Insect Science 38(3):216-223. https://doi.org/10.1017/S1742758418000085

Barradas C, Pinto G, Correia B, Castro BB, Phillips AJL, Alves A (2018). Drought × disease interaction in Eucalyptus globulus under Neofusicoccum eucalyptorum infection. Plant Pathology 67(1):87-96. https://doi.org/10.1111/ppa.12703

Bartels D, Sunkar R (2005). Drought and salt tolerance in plants. Critical Reviews in Plant Sciences 24(1):23-58.

Battie-Laclau P, Delgado-Rojas JS, Christina M, Nouvellon Y, Bouillet JP, Piccolo MC, … Laclau JP (2016). Potassium fertilization increases water-use efficiency for stem biomass production without affecting intrinsic water-use efficiency in Eucalyptus grandis plantations. Forest Ecology and Management 364:77-89. https://doi.org/10.1016/j.foreco.2016.01.004

Bedon F, Majada J, Feito I, Chaumeil P, Dupuy JW, Lomenech AM, … Plomion C (2011). Interaction between environmental factors affects the accumulation of root proteins in hydroponically grown Eucalyptus globulus (Labill.). Plant Physiology and Biochemistry 49(1):69-76. https://doi.org/10.1016/j.plaphy.2010.09.020

Beech E, Rivers M, Oldfield S, Smith PP (2017). Global tree search: the first complete global database of tree species and country distributions. Journal of Sustainable Forestry 36(5):454-89. https://doi.org/10.1080/10549811.2017.1310049

Berger S, Sinha AK, Roitsch T (2007). Plant physiology meets phytopathology: plant primary metabolism and plant-pathogen interactions. Journal of Experimental Botany 58(15-16):4019-4026. https://doi.org/10.1093/jxb/erm298

Bignell CM, Dunlop PJ, Brophy JJ, Jackson JF (1995). Volatile leaf oils of some south‐western and southern Australian species of the genus Eucalyptus part VI-subgenus symphyomyrtus, section adnataria. Flavour and Fragrance Journal 10(6):359-364.

Bostock RM, Pye MF, Roubtsova Tv (2014). Predisposition in plant disease: exploiting the nexus in abiotic and biotic stress perception and response. Annual Review of Phytopathology 52:517-549. https://doi.org/10.1146/annurev-phyto-081211-172902

Brodersen CR, McElrone AJ (2013). Maintenance of xylem network transport capacity: A review of embolism repair in vascular plants. Frontiers in Plant Science. https://doi.org/10.3389/fpls.2013.00108

Carignato A, Vázquez-Piqué J, Tapias R, Ruiz F, Fernández M (2020). Variability and plasticity in cuticular transpiration and leaf permeability allow differentiation of Eucalyptus clones at an early age. Forests 11(1):9. https://doi.org/10.3390/F11010009

Chen SF, Pavlic D, Roux J, Slippers B, Xie YJ, Wingfield MJ, Zhou XD (2011). Characterization of Botryosphaeriaceae from plantation-grown Eucalyptus species in south China. Plant Pathology 60(4):739-751. https://doi.org/10.1111/j.1365-3059.2011.02431.x

Clayton-Greene KA (1983). The tissue water relationships of Callitris columellaris, Eucalyptus melliodora and Eucalyptus microcarpa investigated using the pressure-volume technique. Oecologia 57(3):368-373.

Coopman RE, Jara JC, Bravo LA, Sáez KL, Mella GR, Escobar R (2008). Changes in morpho-physiological attributes of Eucalyptus globulus plants in response to different drought hardening treatments. Electronic Journal of Biotechnology 11(2):30-39. https://doi.org/10.2225/vol11-issue2-fulltext-9

Correia B, Hancock RD, Valledor L, Pinto G (2018). Gene expression analysis in Eucalyptus globulus exposed to drought stress in a controlled and a field environment indicates different strategies for short-and longer-term acclimation. Tree Physiology 38(11):1623-1639. https://doi.org/10.1093/treephys/tpy067

Correia B, Pintó-Marijuan M, Neves L, Brossa R, Dias MC, Costa A, … Pinto G (2014). Water stress and recovery in the performance of two Eucalyptus globulus clones: physiological and biochemical profiles. Physiologia Plantarum 150(4):580-592. https://doi.org/10.1111/ppl.12110

Deslauriers A, Morin H (2005). Intra-annual tracheid production in Balsam fir stems and the effect of meteorological variables. Trees 19(4):402-408. https://doi.org/10.1007/s00468-004-0398-8

Desprez-Loustau ML, Marçais B, Nageleisen LM, Dominique P, Vannini A (2006). Interactive effects of drought and pathogens in forest trees. Annals of Forest Science 63(6):597-612. https://doi.org/10.1051/forest:2006040

DGF (2007). Guide technique du reboisement en Tunisie. Ministère de l’Agriculture et des Ressources Hydriques, Tunis 286.

DGF (2010). Guide pratique de production en hors sol de plants forestiers, pastoraux et ornementaux en Tunisie, Tunis.

Dhriti S, Laxmi A (2015). Transcriptional regulation of drought response: a tortuous network of transcriptional factors. Frontiers in Plant Science 6:895. https://doi.org/10.3389/fpls.2015.00895

Downes G, Wimmer R, Evans R (2004). Interpreting sub-annual wood and fibre property variation in terms of stem growth. wood fibre cell walls: methods to study their formation, structure and properties. Uppsala, Sweden: Swedish University of Agricultural Sciences 265-281.

Drew DM, Downes GM, O’Grady AP, Read J, Worledge D (2009). High resolution temporal variation in wood properties in irrigated and non-irrigated Eucalyptus globulus. Annals of Forest Science 66(4):1-10. https://doi.org/10.1051/forest/2009017

Drew DM, Pammenter NW (2007). Developmental rates and morphological properties of fibres in two eucalypt clones at sites differing in water availability. Southern Hemisphere Forestry Journal 69(2):71-79. doi: 10.2989/SHFJ.2007.69.2.1.287

Eilmann B, Zweifel R, Buchmann N, Graf Pannatier E, Rigling A (2011). Drought alters timing, quantity, and quality of wood formation in Scots pine. Journal of Experimental Botany 62(8):2763-2771. https://doi.org/10.1093/jxb/erq443

Eisikowitch D, Dag A, Samocha Y (2012). Two eucalypts and one hybrid source of pollen and nectar in Israel. American Bee Journal 152(6):607-608.

Eksteen AB, Grzeskowiak V, Jones NB, Pammenter NW (2013). Stomatal characteristics of Eucalyptus grandis clonal hybrids in response to water stress. Southern Forests: Journal of Forest Science 75(3):105-111. https://doi.org/10.2989/20702620.2013.804310

Elaieb MT, Ayed SB, Ouellani S, Khouja ML, Touhami I, Candelier K (2019). Collapse and physical properties of native and pre-steamed Eucalyptus camaldulensis and Eucalyptus saligna wood from Tunisia. Journal of Tropical Forest Science 31(2):162-174. https://doi.org/10.26525/jtfs2019.31.2.162174

Elli EF (2020). Eucalyptus simulation models: understanding and mitigating the impacts of climate variability and change on forest productivity across Brazil. PhD Thesis, Universidade de São Paulo. https://doi.org/10.11606/T.11.2020.tde-13082020-180005

FAO (2002). Food and agriculture organization. Eucalyptus in east Africa, socio-economic and environmental issues, by Gessesse Dessie, TekluErkossa. Planted forests and trees working paper 46/E. Forest Management Team, Forest Management Division. FAO, Rome.

Farrell RC, Bell DT, Akilan K, Marshall J K (1996). Morphological and physiological comparisons of clonal lines of Eucalyptus camaldulensis. I. responses to drought and waterlogging. Functional Plant Biology 23(4):497-507.

Fernando DR, Lynch JP, Hanlon MT, Marshall AT (2021). Foliar elemental microprobe data and leaf anatomical traits consistent with drought tolerance in Eucalyptus largiflorens (Myrtaceae). Australian Journal of Botany 69(4):215-224. https://doi.org/10.1071/BT20170

Ferraz SF, de Paula Lima W, Rodrigues CB (2013). Managing forest plantation landscapes for water conservation. Forest Ecology and Management 301:58-66. https://doi.org/10.1016/j.foreco.2012.10.015

Fromm J (2010). Wood formation of trees in relation to potassium and calcium nutrition. Tree Physiology 30(9):1140-1147. https://doi.org/10.1093/treephys/tpq024

Fujita M, Fujita Y, Noutoshi Y, Takahashi F, Narusaka Y, Yamaguchi-Shinozaki K, Shinozaki K (2006). Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Current Opinion in Plant Biology 9(4):436-442.

Ghasemian A, Eslami M, Hasanvand F, Bozorgi H, Al-Abodi H R (2019). Eucalyptus camaldulensis properties for use in the eradication of infections. Comparative Immunology, Microbiology and Infectious Diseases 65:234-237.

Ghosh Dasgupta M, Dharanishanthi V (2017). Identification of PEG-induced water stress responsive transcripts using co-expression network in Eucalyptus grandis. Gene 627:393-407. https://doi.org/10.1016/j.gene.2017.06.050

Gibson A, Hubick KT, Bachelard EP (1991). Effects of abscisic acid on morphological and physiological responses to water stress in Eucalyptus camaldulensis seedlings. Australian Journal of Plant Physiology 18(2):153-163.

Gonçalves JLM, Alvares CA, Rocha JHT, Brandani CB, Hakamada R (2017). Eucalypt plantation management in regions with water stress. Southern Forests 79(3):169-183. https://doi.org/10.2989/20702620.2016.1255415

Hodecker BER (2015). Comparison of drought stress responses of tolerant and sensitive Eucalypt genotypes. University of Viçosa, Minas Gerais-Brasil, pp 148.

Iwakiri S, Trianoski R, Stüpp ÂM, Cabral BM, Alvares Coppi J, Gayer A (2019). The use of Eucalyptus camaldulensis and Eucalyptus urophylla wood in the production of edge glued panels. Floresta, 49(2):317-324. https://doi.org/10.5380/rf.v49

Jansen S, Gortan E, Lens F, Lo Gullo MA, Salleo S, Scholz A, Nardini A (2011). Do quantitative vessel and pit characters account for ion‐mediated changes in the hydraulic conductance of angiosperm xylem?. New Phytologist 189(1):218-228.

Jeddi K, Cortina J, Chaieb M (2009). Acacia salicina, Pinus halepensis and Eucalyptus occidentalis improve soil surface conditions in arid southern Tunisia. Journal of Arid Environments 73(11):1005-1013. https://doi.org/10.1016/j.jaridenv.2009.05.005

Johannsmeier MF (2016). Beeplants of south Africa: sources of nectar, pollen honeydew and propolis for honeybees. published by SANBI. Pretoria pp 550.

Joshi M, Palanisami K (2011). Impact of Eucalyptus plantations on ground water availability in south Karnataka. ICID 21st International Congress on Irrigation and Drainage 255-262.

Kainat R, Mushtaq Z, Nadeem F (2019). Derivatization of essential oil of Eucalyptus to obtain valuable market products-A comprehensive review, IJCBS.

Kendig SR, Rupe JC, Scott HD (2000). Effect of irrigation and soil water stress on densities of Macrophomina phaseolina in soil and roots of two soybean cultivars. Plant Disease 84(8):895-900.

Khouja ML, Khaldi A, Rejeb MN (2001). Resultants of the Eucalyptus introduction trialis in Tunisia procedings of international conference on Eucalyptus in the Mediterranean basin: prospective and new utilization Ed. Centro Propozione Pubblicita, Taormina, Italy, pp 163-168.

Kozlowski TT, Kramer PJ, Pallardy SG (1991). The physiological ecology of woody plants. Academic Press, San Diego.

Krabel D (2000). Influence of sucrose on cambial activity. Cell and Molecular Biology of Wood Formation. BIOS 113-126.

Laclau JP, da Silva EA, Rodrigues Lambais G, Bernoux M, le Maire G, Stape JL, … Nouvellon Y (2013). Dynamics of soil exploration by fine roots down to a depth of 10 m throughout the entire rotation in Eucalyptus grandis plantations. Frontiers in Plant Science 4:243. https://doi.org/10.3389/fpls.2013.00243

Leicach SR, Garau A, Guarnaschelli AB, Sztarker N, Dato A (2008). Changes in Eucalyptus camaldulensis essential oils with water stress. Conference presented at 5th world congress on allelopathy. ForestSystems.

Leicach SR, Garau AM, Guarnaschelli AB, Yaber Grass MA, Sztarker ND, Dato A (2010). Changes in Eucalyptus camaldulensis essential oil composition as response to drought preconditioning. Journal of Plant Interactions 5(3):205-210. https://doi.org/10.1080/17429145.2010.483744

Leicach SR, Grass MAY, Chludil HD, Garau AM, Guarnaschelli AB, Fernandez PC (2012). Chemical defenses in Eucalyptus species: a sustainable strategy based on antique knowledge to diminish agrochemical dependency. New Advances and Contributions to Forestry Research.

Lemcoff JH, Guarnaschelli AB, Garau AM, Bascialli ME, Ghersa CM (1994). Osmotic adjustment and its use as a selection criterion in Eucalyptus seedlings. Canadian Journal of Forest Research 24(12):2404-2408.

Li C (1998). Some aspects of leaf water relations in four provenances of Eucalyptus microtheca seedlings. Forest Ecology and Management 111(2-3):303-308.

Li C, Wang K (2003). Differences in drought responses of three contrasting Eucalyptus microtheca F. Muell. populations. Forest Ecology and Management 179(1-3):377-385

Limam H, ben Jemaa M, Tammar S, Ksibi N, Khammassi S, Jallouli S, … Msaada K (2020). Variation in chemical profile of leaves essential oils from thirteen Tunisian Eucalyptus species and evaluation of their antioxidant and antibacterial properties. Industrial Crops and Products 158:112964. https://doi.org/10.1016/j.indcrop.2020.112964

Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1998). Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought-and low-temperature-responsive gene expression, respectively, in Arabidopsis. The Plant Cell 10(8):1391-1406. https://doi.org/10.1105/tpc.10.8.1391

Llorens-Molina JA, Vacas S (2017). Effect of drought stress on essential oil composition of Thymus vulgaris L. (Chemotype 1, 8-cineole) from wild populations of eastern Iberian Peninsula. Journal of Essential Oil Research 29(2):145-155. https://doi.org/10.1080/10412905.2016.1211561

Luo ZB, Langenfeld-Heyser R, Calfapietra C, Polle A (2005). Influence of free air CO2 enrichment (EUROFACE) and nitrogen fertilisation on the anatomy of juvenile wood of three poplar species after coppicing. Trees 19(2):109-118. https://doi.org/10.1007/s00468-004-0369-0

Maaloul A, Michalet S, Saadaoui E, Ghzel N, Bekir J, Romdhane C ben, … Romdhane M (2019). Effect of treated wastewater on growth and secondary metabolites production of two Eucalyptus species. Agricultural Water Management 211:1-9. https://doi.org/10.1016/j.agwat.2018.09.027

Macfarlane C, Adams MA (1998). Δ13C of wood in growth-rings indicates cambial activity of drought-stressed trees of Eucalyptusg globulus. Functional Ecology 12(4):655-64. https://doi.org/10.1046/j.1365-2435.1998.00230.x

Macfarlane C, White DA, Adams MA (2004). The apparent feed-forward response to vapour pressure deficit of stomata in droughted, field-grown Eucalyptus globulus Labill. Plant, Cell and Environment 27(10):1268-1280.

Mahdhi N, Sghaier M, Fouzai A, Kadri N (2019). Water and climate change: adaptation strategies for irrigation water management in southeaster Tunisia. New Medit 18(1):15-28.

Marchin RM, Turnbull TL, Deheinzelin AI, Adams MA (2017). Does triacylglycerol (TAG) serve a photoprotective function in plant leaves? An examination of leaf lipids under shading and drought. Physiologia Plantarum 161(3):400-413.

Martins R de S, Faria JMR, Rossini BC, Marino CL, dos Santos LD, José AC (2020). Proteomic analyses unraveling water stress response in two Eucalyptus species originating from contrasting environments for aridity. Molecular Biology Reports 47(7):5191-5205. https://doi.org/10.1007/s11033-020-05594-1

Maseda PH, Fernández RJ (2015). Growth potential limits drought morphological plasticity in seedlings from six Eucalyptus provenances. Tree Physiology 36(2):243-251. https://doi.org/10.1093/treephys/tpv137

Mateus N de S, Leite AF, Santos EF, Ferraz A de V, Goncalves JL de M, Lavres J (2021). Partial substitution of K by Na alleviates drought stress and increases water use efficiency in Eucalyptus species seedlings. Frontiers in Plant Science 12. https://doi.org/10.3389/fpls.2021.632342

McDowell N, Pockman WT, Allen CD, Breshears DD, Cobb N, Kolb T, … Yepez EA (2008). Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought?. New Phytologist 178(4):719-739. https://doi.org/10.1111/j.1469-8137.2008.02436.x

Mechergui K, Jaouadi W, Naghmouchi S, Alsubeie M, Khouja ML (2019). Micromorphological observation of Eucalyptus seeds, multivariate statistical analyses and modeling of their germination under salt stress and osmotic constraint. Cerne 25:156-171. https://doi.org/10.1590/01047760201925022635

MEE (2013). Ministère de l’equipement et de l’environnement. Seconde communication nationale de la Tunisie à la convention cadre des nations unies sur les changements climatiques. http://mc3.lped.fr.

Merchant A, Arndt SK, Rowell DM, Posch S, Callister A, Tausz M, Adams MA (2010). Seasonal changes in carbohydrates, cyclitols, and water relations of 3 field grown Eucalyptus species from contrasting taxonomy on a common site. Annals of Forest Science 67(1):104-104. https://doi.org/10.1051/forest/2009085

Merchant A, Callister A, Arndt S, Tausz M, Adams M (2007). Contrasting physiological responses of six Eucalyptus species to water deficit. Annals of Botany 100(7):1507-1515. https://doi.org/10.1093/aob/mcm234

Merchant A, Tausz M, Arndt SK, Adams MA (2006). Cyclitols and carbohydrates in leaves and roots of 13 Eucalyptus species suggest contrasting physiological responses to water deficit. Plant, Cell and Environment 29(11):2017-2029. https://doi.org/10.1111/j.1365-3040.2006.01577.x

Metro A (1970). Les Eucalyptus dans le monde méditerranéen. Revue Forestière Fránçaise.

Michelozzi M, Johnson JD, Warrag EI (1995). Response of ethylene and chlorophyll in two Eucalyptus clones during drought. New Forests 9(3):197-204.

Morran S, Eini O, Pyvovarenko T, Parent B, Singh R, Ismagul A, … Lopato S (2011). Improvement of stress tolerance of wheat and barley by modulation of expression of DREB/CBF factors. Plant Biotechnology Journal 9(2):230-249. https://doi.org/10.1111/j.1467-7652.2010.00547.x

Myers BA, Neales TF (1986). Osmotic adjustment, induced by drought, in seedlings of three Eucalyptus species. Australian Journal of Plant Physiology 13(5):597-603.

Naidoo S, Külheim C, Zwart L, Mangwanda R, Oates CN, Visser EA, … Myburg AA (2014). Uncovering the defence responses of Eucalyptus to pests and pathogens in the genomics age. Tree Physiology 34(9):931-943. https://doi.org/10.1093/treephys/tpu075

Nakashima K, Ito Y, Yamaguchi-Shinozaki K (2009). Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiology 149(1):88-95 https://doi.org/10.1104/pp.108.129791

Nardini A, Gullo MAL, Salleo S (2011). Refilling embolized xylem conduits: is it a matter of phloem unloading?. Plant Science 180(4):604-611.

Negahdarsaber M (2019). Impact of planting Eucalyptus species on floodwater spreading: a case study of kowsar aquifer station, fasa, Iran. Iranian Journal of Rainwater Catchment Systems 7(3):1-8.

ONAGRI (2019). Indicateurs clés sur la foret, les produit et services forestiers en Tunisie. Ministère de l’Agriculture. Tunisia http://www.onagri.nat.tn/uploads/veille/foret16-8-2019.pdf

Pérez CA, Wingfield MJ, Slippers B, Altier N A, Blanchette RA (2009). Neofusicoccum eucalyptorum, a Eucalyptus pathogen, on native Myrtaceae in Uruguay. Plant Pathology 58(5):964-970.

Pfautsch S, Harbusch M, Wesolowski A, Smith R, Macfarlane C, Tjoelker MG, … Adams MA (2016). Climate determines vascular traits in the ecologically diverse genus Eucalyptus. Ecology Letters 19(3):240-248. https://doi.org/10.1111/ele.12559

Pita P, Gasco A, Pardos JA (2003). Xylem cavitation, leaf growth and leaf water potential in Eucalyptus globulus clones under well-watered and drought conditions. Functional Plant Biology 30(8):891-899.

Pita P, Pardos JA (2001). Growth, leaf morphology, water use and tissue water relations of Eucalyptus globulus clones in response to water deficit. Tree Physiology 21(9):599-607. https://doi.org/10.1093/treephys/21.9.599

Puech L, Türk S, Hodson J, Fink S (2000). Wood formation in hybrid aspen (Populus tremula L. × Populus tremuloides Michx.) grown under different nitrogen regimes. Cell and Molecular Biology of Wood Formation 41-153.

Rad MH, Jaimand K, Assareh MH, Soltani M (2014). Effects of drought stress on the quantity and quality of essential oil and water use efficiency in Eucalyptus (Eucalyptus camaldulensis Dehnh.). Iranian Journal of Medicinal and Aromatic Plants 29:772-782.

Rawat JS, Banerjee SP (1998). The influence of salinity on growth, biomass production and photosynthesis of Eucalyptus camaldulensis Dehnh. and Dalbergia sissoo Roxb seedlings. Plant and Soil 205(2):163-169.

Rossi S, Deslauriers A, Anfodillo T, Morin H, Saracino A, Motta R, Borghetti M (2006). Conifers in cold environments synchronize maximum growth rate of tree-ring formation with day length. New Phytologist 170(2):301-310. https://doi.org/10.1111/j.1469-8137.2006.01660.x

Saadaoui E, ben Yahia K, Chemlali I, Belaïd S, ben Yahia K, ben Romdhane C (2022). Eucalypt in the Tunisian arid region: diversity and valorization for honey production. International Journal of Agriculture and Nutrition 4(1):1-5.

Saadaoui E, ben Yahia K, Dhahri S, ben Jamaa ML, Khouja ML. (2017). An overview of adaptative responses to drought stress in Eucalyptus spp. Forestry Studies 67(1):86-96. https://doi.org/10.1515/fsmu-2017-0014

Searson MJ, Thomas DS, Montagu KD, Conroy JP (2004). Wood density and anatomy of water-limited eucalypts. Tree Physiology 24(11):1295-1302.

Sevanto S (2018). Drought impacts on phloem transport. Current Opinion in Plant Biology 43:76-81. https://doi.org/10.1016/j.pbi.2018.01.002

Sherwood P, Villari C, Capretti P, Pierluigi B (2015). Mechanisms of induced susceptibility to diplodia tip blight in drought-stressed Austrian pine. Tree Physiology 35(5):549-62. https://doi.org/10.1093/treephys/tpv026

Shinozaki K, Yamaguchi-Shinozaki K (2007). Gene networks involved in drought stress response and tolerance. Journal of Experimental Botany 58(2):221-227. https://doi.org/10.1093/jxb/erl164

Shvaleva AL, Costa F, Breia E, Jouve L, Hausman JF, Almeida M H, … Chaves MM (2006). Metabolic responses to water deficit in two Eucalyptus globulus clones with contrasting drought sensitivity. Tree Physiology 26(2):239-48. https://doi.org/10.1093/treephys/26.2.239

Silva CEF, Shvaleva A, Maroco JP, Almeida MH, Chaves MM, Pereira JS (2004). Responses to water stress in two Eucalyptus globulus clones differing in drought tolerance. Tree Physiology 24(10):1165-1172. https://doi.org/10.1093/treephys/24.10.1165.

Singh D, Kaur S, Kumar A (2020). In vitro drought tolerance in selected elite clones of Eucalyptus tereticornis Sm. Acta Physiologiae Plantarum 42(2):1-9. https://doi.org/10.1007/s11738-019-3009-4

Singh D, Laxmi A (2015). Transcriptional regulation of drought response: a tortuous network of transcriptional factors. Frontiers in Plant Science 6:895. https://doi.org/10.3389/fpls.2015.00895

Souden S (2021). Physiologie de résilience face à l’aridité chez quelques espèces de reboisement des zones arides Tunisiennes. PhD Thesis, University of Gabes, Tunisia.

Souden S, Ennajeh M, Ouledali S, Massoudi N, Cochard H, Khemira H (2020). Water relations, photosynthesis, xylem embolism and accumulation of carbohydrates and cyclitols in two eucalyptus species (E. Camaldulensis and E. Torquata) subjected to dehydration–rehydration cycle. Trees - Structure and Function 34(6):1439-1452. https://doi.org/10.1007/s00468-020-02016-4

Sperry JS, Hacke UG, Oren R, Comstock JP (2002). Water deficits and hydraulic limits to leaf water supply. Plant, Cell and Environment 25(2):251-263.

Spokevicius AV, Tibbits J, Rigault P, Nolin MA, Müller C, Merchant A (2017). Medium term water deficit elicits distinct transcriptome responses in Eucalyptus species of contrasting environmental origin. BMC Genomics 18(1):1-17. https://doi.org/10.1186/s12864-017-3664-z

Susiluoto S, Berninger F (2007). Interactions between morphological and physiological drought responses in Eucalyptus microtheca. Silva Fennica 41(2):221-33. https://doi.org/10.14214/sf.292

Szota C, Farrell C, Koch JM, Lambers H, Veneklaas EJ (2011). Contrasting physiological responses of two co-occurring eucalypts to seasonal drought at restored bauxite mine sites. Tree Physiology 31(10):1052-1066. https://doi.org/10.1093/treephys/tpr085

Teulieres C, Bossinger G, Moran G, Marque C (2007). Stress studies in Eucalyptus. Plant Stress 1(2):197-215.

Thomas DS, Montagu KD, Conroy JP (2004). Changes in wood density of Eucalyptus camaldulensis due to temperature: the physiological link between water viscosity and wood anatomy. Forest Ecology and Management 193(1-2):157-165.

Thumma BR, Sharma N, Southerton SG (2012). Transcriptome sequencing of Eucalyptus camaldulensis seedlings subjected to water stress reveals functional single nucleotide polymorphisms and genes under selection. BMC Genomics 13(1):1-21. https://doi.org/10.1186/1471-2164-13-364

Tuomela K (1997). Leaf water relations in six provenances of Eucalyptus microtheca: A greenhouse experiment. Forest Ecology and Management 92(1-3):1-10. https://doi.org/10.1016/S0378-1127(96)03961-8

Valadares J, Figueiredo De Paula N, Cesar De Paula R (2014). Physiological changes in Eucalyptus hybrids under different irrigation regimes. Revista Ciência Agronômica 45(4):805-814.

Verner D, Tréguer D, Redwood J, Christensen J, Mcdonnell R, Elbert C, … Belghazi S (2018). Climate variability, drought, and drought management in Morocco’s agricultural sector.

Villar E, Klopp C, Noirot C, Novaes E, Kirst M, Plomion C, Gion JM (2011). RNA-seq reveals genotype-specific molecular responses to water deficit in eucalyptus. BMC Genomics 12(1):1-18 https://doi.org/10.1186/1471-2164-12-538

Wang Y, Jiang J, Zhao X, Liu G, Yang C, Zhan L (2006). A novel LEA gene from Tamarix androssowii confers drought tolerance in transgenic tobacco. Plant Science 171(6):655-662. https://doi.org/10.1016/j.plantsci.2006.06.011

Warren CR, Aranda I, Cano FJ (2011). Responses to water stress of gas exchange and metabolites in Eucalyptus and Acacia spp. Plant, Cell and Environment 34(10):1609-1629. https://doi.org/10.1111/j.1365-3040.2011.02357.x

White Da, Beadle C L, Worledge D (1996). Seasonal, drought and species effects. Tree Physiology 16(5):469-76.

White DA, McGrath JF, Ryan MG, Battaglia M, Mendham DS, Kinal J, … Hunt ME (2014). Managing for water-use efficient wood production in Eucalyptus globulus plantations. Forest Ecology and Management 331:272-280. https://doi.org/10.1016/j.foreco.2014.08.020

White DA, Turner NC, Galbraith JH (2000). Leaf water relations and stomatal behaviour of four allopatric Eucalyptus species planted in mediterranean south western Australia. Tree Physiology 20(17):1157-1165.

Wimmer R, Downes GM, Evans R (2002). High-resolution analysis of radial growth and wood density in Eucalyptus nitens, grown under different irrigation regimes. Annals of Forest Science 59(5-6):519-524. https://doi.org/10.1051/forest:2002036

Wind C, Arend M, Fromm J (2004). Potassium‐dependent cambial growth in poplar. Plant Biology 7(1):30-37.

Wingfield MJ, Slippers B, Hurley BP, Coutinho TA, Wingfield BD, Roux J (2008). Eucalypt pests and diseases: growing threats to plantation productivity. Southern Forests 70(2):139-144. https://doi.org/10.2989/SOUTH.FOR.2008.70.2.9.537

Yang X, Li D, McGrouther K, Long W, Li Y, Chen Y, Wang H (2017). Effect of Eucalyptus forests on understory vegetation and soil quality. Journal of Soils and Sediments 17(9):2383-2389.

Zhang J, Wu J, Guo M, Aslam M, Wang Q, Ma H, … Cao S (2020). Genome-wide characterization and expression profiling of Eucalyptus grandis HD-Zip gene family in response to salt and temperature stress. BMC Plant Biology 20(1):1-15. https://doi.org/10.1186/s12870-020-02677-w

Zhou SX, Medlyn BE, Prentice IC (2016). Long-term water stress leads to acclimation of drought sensitivity of photosynthetic capacity in xeric but not riparian Eucalyptus species. Annals of Botany 117(1):133-144. https://doi.org/10.1093/aob/mcv161

Zweifel R, Drew DM, Schweingruber F, Downes GM (2014). Xylem as the main origin of stem radius changes in eucalyptus. Functional Plant Biology 41:520-534. https://doi.org/10.1071/FP13240

Published

2022-09-23

How to Cite

CHEMLALI, I., YAHIA, K. B. ., BELAÏD, S. ., RABEH, S. B. ., ROMDHANE, C. B. ., MESSOUDI, N. ., & SAADAOUI, E. . (2022). Anatomical, physiological, biochemical and molecular responses of Eucalyptus spp. under water deficit conditions and characteristics of Tunisian arid species: an overview. Notulae Scientia Biologicae, 14(3), 11218. https://doi.org/10.55779/nsb14311218

Issue

Section

Review articles
CITATION
DOI: 10.55779/nsb14311218

Most read articles by the same author(s)