Spring phenology of some ornamental species, as an indicator of temperature increase in the urban climate area

Authors

  • Antonela BUICAN STANCIU University of Craiova, Faculty of Horticulture, Doctoral School of Plant and Animal Resources Engineering, 13 A.I. Cuza Street, 200585, Craiova (RO)
  • Mariana IONESCU High School Bechet, 33 A.I. Cuza Street, 207060, Bechet (RO)
  • Sina COSMULESCU University of Craiova, Faculty of Horticulture, Department of Horticulture and Food Science, 13 A.I. Cuza Street, 200585 Craiova (RO)

DOI:

https://doi.org/10.15835/nsb13311007

Keywords:

climate changes, rural climate, spring season phenology, temperature, urban climate

Abstract

The aim of this study is to provide information on the phenology of urban spring season, of some species of ornamental trees and shrubs, in the light of climate changes occurred over the recent decades. Ten species of ornamental shrubs and trees cultivated in two areas of a town located in southwestern Romania were studied. It was found that the spring season phenology of the studied species is dependent on the climatic year, in recording differences between the number of days from November 1 and the beginning of each spring phenophase, both from one species to another and from one climatic year to another, and also from one area to another; the spring phenology starting earlier in the urban area regardless of the species and the climatic year. Higher temperatures, rising from one year to another, are speeding-up the onset and development of spring phenology, regardless of species, and the urban climate through the effect of urban heat island leads to even earlier onset of spring phenophases and shortening of the growing season, so that by phenological differences existing within the species from one climatic year to another and from one climatic zone to another, spring season phenology can be considered an indicator of temperature rise.

Metrics

Metrics Loading ...

References

Badeck FW, Bondeau A, Böttcher K, Doktor D, Lucht W, Schaber J, Sitch S (2004). Responses of spring phenology to climate change. New Phytologist 162(2):295-309. https://doi.org//10.1111/j.1469-8137.2004.01059.x

Buitenwerf R, Rose L, Higgins SI (2015). Three decades of multi-dimensional change in global leaf phenology. Nature Climate Change 5:364-368. https://doi.org/10.1038/nclimate2533

Cosmulescu S, Baciu A, Botu M, Achim G (2010a). Environmental factors’ influence on walnut flowering. Acta Horticulturae 861:83-88.

Cosmulescu S, Baciu A, Cichi M, Gruia M (2010b). The effect of climate changes on phenological phases in plum tree (Prunus domestica) in south-western Romania. South-Western Journal of Horticulture, Biology and Environment 1(1):9-20.

Cosmulescu S, Baciu A, Gruia M (2015). Influence of climatic factors on the phenology spring in Southern Oltenia (Romania). Journal of Horticulture, Forestry and Biotechnology 19(1):147-158.

Cosmulescu S, Gruia M (2016). Climatic variability in Craiova (Romania) and its impacts on fruits orchards. Southwestern Journal of Horticulture, Biology and Environment 7(1):15-26.

Cosmulescu SN, Ionescu MB, Netoiu C (2019). Impact of climatic factors on radial growth in walnut (Juglans regia L.). Notulae Scientia Biologicae 11(2):304-308. https://doi.org/10.15835/nsb11210492

Cosmulescu S, Ionescu MB (2018). Phenological calendar in some walnut genotypes grown in Romania and its correlations with air temperature. International Journal of Biometeorology 62(11):2007-2013. https://doi.org/10.1007/s00484-018-1606-3

Cosmulescu S, Stanciu AB, Ionescu M (2020). The influence of temperature on phenology of ornamental woody species in urban environment. Scientific Papers-Series B, Horticulture 64(1):61-67.

Cosmulescu S, Scrieciu F (2019). Development of vegetation stages in medlar genotypes (Mespilus germanica L.) coded and described according to the BBCH scale. Biharean Biologist 14:116-119.

Della Marta PM, Haylock MR, Luterbacher J, Wanner H (2007). Doubled length of western European summer heat waves since 1880. Journal of Geophysical Research: Atmospheres 112:D15. https://doi.org/10.1029/2007JD008510

Fitchett JM, Grab SW, Thompson DI (2015). Plant phenology and climate change: Progress in methodological approaches and application. Progress in Physical Geography 39(4):460-482. https://doi.org/10.1177/0309133315578940

Gervais N, Buyantuev A, Gao F (2017). Modeling the effects of the urban built-up environment on plant phenology using fused satellite data. Remote Sensing 9:99. https://doi.org/10.3390/rs9010099

Han Q, Wang T, Jiang Y, Fischer R, Li C (2018). Phenological variation decreased carbon uptake in European forests during 1999–2013. Forest Ecology and Management 427:45-51. https://doi.org/10.1016/j.foreco.2018.05.062

Heide OM (2011). Temperature rather than photoperiod controls growth cessation and dormancy in Sorbus species. Journal of Experimental Botany 62(15):5397-5404. https://doi.org/10.1093/jxb/err213

Keenan TF, Gray J, Friedl MA, Toomey M, Bohrer G, Hollinger DY, Munger JW, O’Keefe J, Schmid HP, Wing IS (2014). Net carbon uptake has increased through warming-induced changes in temperate forest phenology. Nature Climate Change 4:598-604. https://doi.org/10.1038/NCLIMATE2253

Li X, Zhou Y, Asrar GR, Mao J, Li X, Li W (2016). Response of vegetation phenology to urbanization in the conterminous United States. Global Change Biology 23:2818-2830. https://doi.org/10.1111/gcb.13562

Matei I, Pacurar I, Rosca S, Bilasco S, Sestras P, Rusu T, Jude ET, Tăut FD (2020). Land use favourability assessment based on soil characteristics and anthropic pollution. Case study Somesul Mic valley corridor, Romania. Agronomy 10(9):1245. https://doi.org/10.3390/agronomy10091245

Meng L, Mao J, Zhou Y, Richardson AD, Lee X, Thornton PE, Jia G (2020). Urban warming advances spring phenology but reduces the response of phenology to temperature in the conterminous United States. Proceedings of the National Academy of Sciences 117(8):4228-4233. https://doi.org/10.1073/pnas.1911117117

Menzel A, Sparks TH, Estrella N, Koch E, Aasa A, Ahas R, … Zust ANA (2006). European phenological response to climate change matches the warming pattern. Global Change Biology 12:1969-1976. https://doi.org/10.1111/j.1365-2486.2006.01193.x

Parece TE, Campbell JB (2018). Intra-urban microclimate effects on phenology. Urban Science 2(1):26. https://doi.org/10.3390/urbansci2010026

Piao S, Cui M, Chen A, Wang X, Ciais P, Liu J Tang Y (2011). Altitude and temperature dependence of change in the spring vegetation green-up date from 1982 to 2006 in the Qinghai-Xizang Plateau. Agricultural and Forest Meteorology 151:1599-1608. https://doi.org/10.1016/j.agrformet.2011.06.016

Polgar CA, Primack RB (2011). Leaf‐out phenology of temperate woody plants: from trees to ecosystems. New phytologist 191(4):926-941. https://doi.org/10.1111/j.1469-8137.2011.03803.x

Richardson AD, Andy Black T, Ciais P, Delbart N, Friedl MA, Gobron N, Hollinger DY, Kutsch WL, Longdoz B, Luyssaert S (2010). Influence of spring and autumn phenological transitions on forest ecosystem productivity. Philosophical Transactions of the Royal Society B: Biological Sciences 365:3227-3246. https://doi.org/10.1098/rstb.2010.0102

Shen M, Cao R (2015). Temperature sensitivity as an explanation of the latitudinal pattern of green-up date trend in Northern Hemisphere vegetation during 1982–2008. International Journal of Climatology 35:3707-3712. https://doi.org/10.1002/joc.4227

Shen M, Piao S, Chen X, An S, Fu YH, Wang S, Cong N, Janssens IA (2016). Strong impacts of daily minimum temperature on the green-up date and summer greenness of the Tibetan Plateau. Global Change Biology 22:3057-3066. https://doi.org/10.1111/gcb.13301

Stratópoulos LMF, Zhang C, Duthweiler S, Häberle KH, Rötzer T, Xu C, Pauleit S (2019). Tree species from two contrasting habitats for use in harsh urban environments respond differently to extreme drought. International Journal of Biometeorology 63:197-208. https://doi.org/10.1007/s00484-018-1653-9

Tian J, Zhu X, Wu J, Shen M, Chen J (2020). Coarse-resolution satellite images overestimate urbanization effects on vegetation spring phenology. Remote Sensing 12(1):117. https://doi.org/10.3390/rs12010117

Tooke F, Battey NH (2010). Temperate flowering phenology. Journal of Experimental Botany 61(11):2853-2862. https://doi.org/10.1093/jxb/erq165

Wohlfahr G, Tomelleri E, Hammerle A (2019). The urban imprint on plant phenology. Nature Ecology and Evolution 3(12):1668-1674. https://doi.org/10.1038/s41559-019-1017-9

Yang J, Luo X, Jin C, Xiao X, Xia JC (2020). Spatiotemporal patterns of vegetation phenology along the urban-rural gradient in Coastal Dalian, China. Urban Forestry and Urban Greening 54:126784. https://doi.org/10.1016/j.ufug.2020.126784

Yao R, Wang L, Huang X, Guo X, Niu Z, Liu H (2017). Investigation of urbanization effects on land surface phenology in Northeast China during 2001-2015. Remote Sensing 9:1-17. https://doi.org/10.20944/preprints201701.0051.v1

Zhou D, Zhao S, Zhang L, Liu S (2016). Remotely sensed assessment of urbanization effects on vegetation phenology in China’s 32 major cities. Remote Sensing of Environment 176:272-281. https://doi.org/10.1016/j.rse.2016.02.010

Zipper SC, Schatz J, Singh A, Kucharik CJ, Townsend PA, Loheide SPA (2016). Urban heat island impacts on plant phenology: Intra-urban variability and response to land cover. Environmental Research Letters 11:54023. https://doi.org/10.1088/1748-9326/11/5/054023/meta

Downloads

Published

2021-09-07

How to Cite

BUICAN STANCIU, A., IONESCU, M. ., & COSMULESCU, S. (2021). Spring phenology of some ornamental species, as an indicator of temperature increase in the urban climate area. Notulae Scientia Biologicae, 13(3), 11007. https://doi.org/10.15835/nsb13311007

Issue

Section

Research articles
CITATION
DOI: 10.15835/nsb13311007

Most read articles by the same author(s)