Trees, seeds and seedlings analyses in the process of obtaining a quality planting material for black locust (Robinia pseudoacacia L.)

Authors

  • Andrea M. ROMAN Forestry College Transilvania, Năsăud (RO)
  • Irina M. MORAR University of Agricultural Sciences and Veterinary Medicine, 3-5 Manastur St., 400372 Cluj-Napoca (RO)
  • Alina M. TRUTA University of Agricultural Sciences and Veterinary Medicine, Faculty of Horticulture, 3-5 Mănăștur Street, 400372 Cluj-Napoca (RO)
  • Cătălina DAN University of Agricultural Sciences and Veterinary Medicine, Faculty of Horticulture, 3-5 Mănăștur Street, 400372 Cluj-Napoca (RO)
  • Adriana F. SESTRAS University of Agricultural Sciences and Veterinary Medicine, Faculty of Horticulture, 3-5 Mănăștur Street, 400372 Cluj-Napoca (RO) https://orcid.org/0000-0001-5768-4296
  • Liviu HOLONEC University of Agricultural Sciences and Veterinary Medicine, Faculty of Horticulture, 3-5 Mănăștur Street, 400372 Cluj-Napoca (RO)
  • Florin IORAS Buckinghamshire New University, Queen Alexandra Road, High Wycombe, HP11 2JZ Buckinghamshire (GB) https://orcid.org/0000-0002-7697-3381
  • Radu E. SESTRAS University of Agricultural Sciences and Veterinary Medicine, Faculty of Horticulture, 3-5 Mănăștur Street, 400372 Cluj-Napoca (RO) https://orcid.org/0000-0003-3073-1616

DOI:

https://doi.org/10.15835/nsb12410867

Keywords:

biomass growth; emergence rate; heritability; quality wood; plus trees; seeds

Abstract

Black locust (Robinia pseudoacacia L.) was among the first North-American tree species imported in Europe. In Romania, black locust has established itself as a forest tree appreciated for multiple uses. The objective of the hereby study was to identify a quality planting material at black locust using seeds from trees with superior traits from five stands geographically close, located in North-western of Romania. An empirical selection was done, thus trees with the most favourable traits were selected as plus trees. Among the averages of the main traits (tree height, diameter at breast height, basal area, self pruning trunk length, crown diameter) of the plus trees from the five stands, there were registered significant differences, and two stands stood out with a high biomass growth. Even if the stands had different ages (between 20-35 year), the age did not influence significantly the growth traits of the trees. The seeds of the plus trees (open-pollinated) from all the stands had large size (mean seed weight of 0.057 g/seed). The seedling emergence rate was high, especially in the solarium condition (between 52.7-73.7% compared with 33.0-41.3% in the field). Coefficient of genetic correlation and heritability calculated for the seedlings belongings to half-sib families highlighted that black locust breeding can be extremely effective by a proper selection.

Metrics

Metrics Loading ...

References

An S, Mentler A, Mayer H, Blum WE (2010). Soil aggregation, aggregate stability, organic carbon and nitrogen in different soil aggregate fractions under forest and shrub vegetation on the Loess Plateau, China. Catena 81(3):226-233. https://doi.org/10.1016/j.catena.2010.04.002

Balat M (2010). Bio-oil production from pyrolysis of black locust (Robinia pseudoacacia) wood. Energy Exploration and Exploitation 28:173-186. https://doi.org/10.1260/0144-5987.28.3.173

Baskin CC (2000). Breaking physical dormancy in seeds-focussing on the lens. The New Phytologist 158:229-232. https://doi.org/10.1046/j.1469-8137.2003.00751.x

Bonner FT, Karrfalt RP (2008). The woody plant seed manual. USDA Agricultural Handbook 727:1-1223.

Boring LR, Swank WT (1984). The role of black locust (Robinia pseudoacacia) in forest succession. The Journal of Ecology 1:749-66.

Bos I, Caligari P (2007). Selection methods in plant breeding. Springer Science & Business Media.

Bouteiller XP, Porté AJ, Mariette S, Monty A (2017). Using automated sanding to homogeneously break seed dormancy in black locust (Robinia pseudoacacia L., Fabaceae). Seed Science Research 27(3):243. https://doi.org/10.1017/S0960258517000150

Carl C, Lehmann JR, Landgraf D, Pretzsch H (2019). Robinia pseudoacacia L. in short rotation coppice: Seed and stump shoot reproduction as well as UAS-based spreading analysis. Forests 10(3):235. https://doi.org/10.3390/f10030235

Cierjacks A, Kowarik I, Joshi J, Hempel S, Ristow M, von der Lippe M, Weber E (2013). Biological flora of the British Isles: Robinia pseudoacacia. Journal of Ecology 101(6):1623-1640. https://doi.org/10.1111/1365-2745.12162

Ciuvăţ AL, Abrudan IV, Blujdea V, Dutca I, Nuță IS, Edu E (2013). Biomass equations and carbon content of young black locust (Robinia pseudoacacia L.) trees from plantations and coppices on sandy soils in south-western Romanian Plain. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 41(2):590-592. https://doi.org/10.15835/nbha4129355

Ciuvăţ AL, Abrudan IV, Blujdea V, Marcu C, Dinu C, Enescu C, Nuță IS (2013). Distribution and peculiarities of black locust in Romania. Revista de Silvicultură şi Cinegetică 32:76-85. https://www.cabi.org/ISC/FullTextPDF/2014/20143263765.pdf

Cornelius J (1994). The effectiveness of plus-tree selection for yield. Forest Ecology and Management 67(1-3):23-34.

Costea A, Lazarescu C, Birlanescu E, Ivanschi T, Armașescu S, Trantescu G, Latiș L, Pirvu E (1969). Recommendations on black locust culture. ICSPS, București pp 38.

Dalby R (2004). A honey of a tree: black locust. American Bee Journal 144:382-384.

Dalla Corte A, Moda-Cirino V, Arias CA, Toledo JF, Destro D (2010). Genetic analysis of seed morphological traits and its correlations with grain yield in common bean. Brazilian Archives of Biology and Technology 53(1):27-34. https://doi.org/10.1590/S1516-89132010000100004

Damian I (1978). Afforestations. Editura Didactică și Pedagogică. București pp 374.

DeGomez T, Wagner MR (2001). Culture and use of black locust. HortTechnology 11(2):279-288.

Drăcea M (2008). Contribuţii la cunoaşterea salcâmului în România cu privire specială asupra culturii sale pe solurile nisipoase din Oltenia. Cenuşă R, Râşcă M: traducere din limba germană. Editura Silvică pp 93.

Dünisch O, Koch G, Dreiner K (2007). Verunsicherung uber die Eigenschaften von Robinienholz. Holz Zentralblatt 39:1061-1062.

Dünisch O, Richter HG, Koch G (2010). Wood properties of juvenile and mature heartwood in Robinia pseudoacacia L. Wood Science and Technology 44:301-313. https://doi.org/10.1007/s00226-009-0275-0

Dyderski MK, Jagodziński AM (2019). Seedling survival of Prunus serotina Ehrh., Quercus rubra L. and Robinia pseudoacacia L. in temperate forests of Western Poland. Forest Ecology and Management 450:117498. https://doi.org/10.1016/j.foreco.2019.117498

Enescu M, Dănescu A (2013). Black locust (Robinia pseudoacacia L.) - an invasive neophyte in the conventional land reclamation flora in Romania. Bulletin of the Transilvania University of Brasov, Series II-Forestry Wood Industry Agricultural Food Engineering 6(55):2.

Ernyey J (1927). Die Wanderwege der Robinie und ihre Ansiedlung in Ungarn. Magyar Botanikai Lapok 25:161-191.

Escribano M, Santalla M, de Ron A (1997). Genetic diversity in pod and seed quality traits of common bean populations from northwestern Spain. Euphytica 93:71-81. https://doi.org/10.1023/A:1002908224793

Farrar JL (1995). Trees of the Northern United States and Canada. Blackwell Publishing: Ames, IA, USA pp 502.

Gillespie AR, Pope PE (1990). Rhizosphere acidification increases phosphorus recovery of black locust: II. Model predictions and measured recovery. Soil Science Society of America Journal 54:538-541.

Giurgiu V (2005). Marin Drăcea - Opere alese. Editura Ceres, Bucureşti pp 400.

González-García S, Gasol CM, Moreira MT, Gabarrell X, i Pons JR, Feijoo G (2011). Environmental assessment of black locust (Robinia pseudoacacia L.) based ethanol as potential transport fuel. The International Journal of Life Cycle Assessment 16:465-477. https://doi.org/10.1007/s11367-011-0272-z

Grünewald H, Böhm C, Quinkenstein A, Grundmann P, Eberts J, von Wühlisch G (2009). Robinia pseudoacacia L.: a lesser-known tree species for biomass production. BioEnergy Research 2:123-133. https://doi.org/10.1007/s12155-009-9038-x

Guo XP, Zhu JZ, Yu XX, Luo J (2005). Ways to improve low-benefit black locust forests in Loess Plateau. Forestry Studies in China 7(2):57-62.

Haralamb A (1967). Culture of tree species (in Romanian). Editura Agro-silvică, Bucharest, Romania.

Howe GT, Aitken SN, Neale DB, Jermstad KD, Wheeler NC, Chen TH (2003). From genotype to phenotype: unravelling the complexities of cold adaptation in forest trees. Canadian Journal of Botany 81(12):1247-1266. https://doi.org/10.1139/b03-141

Huntley JC (1990). Robinia pseudoacacia L. In: Silvics of North America, Vol 2. Hardwoods. Burns RM, Honkala BH (Eds). USDA Foreign Agricultural Service Handbook 654: Washington, DC, USA pp 755-761.

Ivanschi T, Costea A, Bîrlănescu E, Mărcoiu A, Nonuţe I (1969). Cercetări privind stabilirea staţiunilor apte pentru cultura salcâmului. Cercetări privind cultura salcâmului. Editura Agrosilvică Bucureşti pp 11-55.

Jayaraman K (2000). A statistical manual for forestry research. Food and Agriculture Organization of the United Nations. Forestry Research Support Programme for Asia and the Pacific, FORSPA. Kerala Forest Research Institute. Regional Office for Asia and the Pacific, Bangkok. http://www.fao.org/3/X6831E/X6831E00.htm#TOC

Kim IS, Lee KM, Shim D, Kim JJ, Kang HI (2020). Plus tree selection of Quercus salicina Blume and Q. glauca Thunb. and its implications in evergreen oaks breeding in Korea. Forests 11(7):735.

Kant A, Dutt V, Sharma DR (2006). Genetic variability in phenotypic characters of Pinus gerardiana. Indian Forester 132:681-690.

Karaki T, Watanabe Y, Kondo T, Koike T (2012). Strophiole of seeds of the black locust acts as a water gap. Plant Species Biology 27:226-232. https://doi.org/10.1111/j.1442-1984.2011.00343.x

Keresztesi B (1980). The black locust. Unasylva 32(127):23-33.

Keresztesi B (1988). The black locust. Akademiai Kiado, Budapest pp 196.

Kheloufi A, Mansouri L, Aziz N, Sahnoune M, Boukemiche S, Ababsa B (2018). Breaking seed coat dormancy of six tree species. Reforesta (5):4-14. https://dx.doi.org/10.21750/REFOR.5.02.48

Koch G, Dünisch O (2008). Juvenile wood in Robinie-Qualität von Robinienholz (Robinia pseudoacacia L.) und Folgerungen für Holzbearbeitung und Produktqualität. Abschlussbericht für das DGfH/AIF- Forschungsvorhaben, Fraunhofer IRB Verlag: Stuttgart, Germany.

Kolbek J, Vítková M, Vetvicka V (2004). From history of Central European Robinia growths and its communities. Zprávy České Botanické Společnosti 39:287-298.

Kowarik I (1992). Einführung und Ausbreitung nichteinheimischer Gehölzarten in Berlin und Brandenburg und ihre Folgen für Flora und Vegetation: ein Modell für die Freisetzung gentechnisch veränderter Organismen. Botanischer Verein von Berlin und Brandenburg.

Latorraca JVF, Dünisch O, Koch G (2011). Chemical composition and natural durability of juvenile and mature heartwood of Robinia pseudoacacia L. Anais da Academia Brasileira de Ciências: 83:1059-1068. https://doi.org/10.1590/S0001-37652011005000016.

Little EL (1971). Atlas of United States Trees; Conifers and Important Hardwoods, US Department of Agriculture, Forest Service: Washington, DC, USA.

Liu NY, Khatamian H, Freta TA (1981). Seed coat structure of three woody legume species after chemical and physical treatments to increase seed germination. Journal of the American Society for Horticultural Science 106(5):691-694.

Long RL, Gorecki MJ, Renton M, Scott JK, Colville L, Goggin DE, … Finch‐Savage WE (2015). The ecophysiology of seed persistence: a mechanistic view of the journey to germination or demise. Biological Reviews 90(1):31-59. https://doi.org/10.1111/brv.12095

Lukasiewicz M, Kowalski S, Makarewicz M (2015). Antimicrobial an antioxidant activity of selected Polish herbhoneys. LWT-Food Science and Technology 64(2):547-553. DOI: 10.1016/j.lwt.2015.06.029

Masaka K, Yamada K (2009). Variation in germination character of Robinia pseudoacacia L. (Leguminosae) seeds at individual tree level. Journal of Forest Research 14(3):167. https://doi.org/10.1007/s10310-009-0117-9

Min-Sheng Y, Hertel H, Schneck V (2004). Allozyme variability of provenance populations of Robinia pseudoacacia from middle Europe. Acta Genetica Sinica 31(12):1439-1447.

Negulescu E, Savulescu A (1957). Dendrology. Editura Agro-Silvica de Stat, București.

Neţoiu C (2012). Asistenţă tehnică privind conservarea şi extinderea în cultură a genotipurilor valoroase de salcâm var. Oltenica (Robinia pseudoacacia var. Oltenica). Referat ICAS.

Nicolescu VN, Hernea C, Bakti B, Keserű Z, Antal B, Rédei K (2018). Black locust (Robinia pseudoacacia L.) as a multi-purpose tree species in Hungary and Romania: a review. Journal of Forestry Research 29(6):1449-1463. https://doi.org/10.1007/s11676-018-0626-5

Nicolescu VN, Rédei K, Mason WL, Vor T, Pöetzelsberger E, Bastien JC, ... Andrašev S (2020). Ecology, growth and management of black locust (Robinia pseudoacacia L.), a non-native species integrated into European forests. Journal of Forestry Research 31:1081-1101. https://doi.org/10.1007/s11676-020-01116-8

Olesniewicz KS, Thomas RB (1999). Effects of mycorrhizal colonization on biomass production and nitrogen fixation of black locust (Robinia pseudoacacia) seedlings grown under elevated atmospheric carbon dioxide. The New Phytologist 142:133-140. https://doi.org/10.1046/j.1469-8137.1999.00372.x

Pedrol N, Puig CG, López-Nogueira A, Pardo-Muras M, González L, Souza-Alonso P (2018). Optimal and synchronized germination of Robinia pseudoacacia, Acacia dealbata and other woody Fabaceae using a handheld rotary tool: concomitant reduction of physical and physiological seed dormancy. Journal of Forestry Research 29(2):283-90.

https://doi.org/10.1007/s11676-017-0445-0

Petrie MD, Wildeman AM, Bradford JB, Hubbard RM, Lauenroth WK (2016). A review of precipitation and temperature control on seedling emergence and establishment for ponderosa and lodgepole pine forest regeneration. Forest Ecology and Management 361:328-338. https://doi.org/10.1016/j.foreco.2015.11.028

Porter RH (1935). Germination of seeds of black locust (Robinia pseudacacia L.). In: Proceedings of the Association of Official Seed Analysts of North America 1935 January 1, Volume 27 pp 63-65.

Qiu L, Zhang X, Cheng J, Yin X (2010). Effects of black locust (Robinia pseudoacacia) on soil properties in the loessial gully region of the Loess Plateau, China. Plant and Soil 332(1-2):207-217. https://doi.org/10.1007/s11104-010-0286-5

Quinkenstein A, Jochheim H (2016). Assessing the carbon sequestration potential of poplar and black locust short rotation coppices on mine reclamation sites in Eastern Germany-Model development and application. Journal of Environmental Management 16:53-66. https://doi.org/10.1016/j.jenvman.2015.11.044

Rédei K, Csiha I, Keseru Z, Gál J (2012). Influence of regeneration method on the yield and stem quality of Black locust (Robinia pseudoacacia L.) stands: a case study. Acta Silvatica et Lignaria Hungarica 8:103-112.

Redei K, Osvath-Bujtas Z, Veperdi I (2008). Black locust (Robinia pseudoacacia L.) improvement in Hungary: a review. Acta Silvatica and Lignaria Hungarica 4:127-132.

Rice SK, Westerman B, Federici R (2004). Impacts of the exotic, nitrogen-fixing black locust (Robinia pseudoacacia) on nitrogen-cycling in a pine-oak ecosystem. Plant Ecology 174:97-107. https://doi.org/10.1023/B:VEGE.0000046049.21900.5a

Rodríguez RL (2013). Causes of variation in genotype× environment interaction. Evolutionary Ecology Research 15(6):733-746.

Rubţov S (1961). Woody species in nursery. Editura Agro-Silvică.

Savolainen O, Pyhäjärvi T, Knürr T (2007). Gene flow and local adaptation in trees. Annual Review of Ecology, Evolution and Systematics 38:595-619. https://doi.org/10.1146/annurev.ecolsys.38.091206.095646

Singh DP, Hooda MS, Bonner FT (1991). An evaluation of scarification methods for seeds of two leguminous trees. New Forest 5:139-145.

Șofletea N, Curtu L (2007). Dendrologie. Editura Universităţii Transilvania pp 540.

Stănescu V (1979). Dendrologie. Editura Didactica și Pedagogica, București pp 470.

Tateno R, Tokuchi N, Yamanaka N, Du S, Otsuki K, Shimamura T, … Hou Q (2007). Comparison of litterfall production and leaf litter decomposition between an exotic black locust plantation and an indigenous oak forest near Yanan on the Loess Plateau, China. Forest Ecology and Management 241(1):84-90. https://doi.org/10.1016/j.foreco.2006.12.026

Usberti R, Martines L (2007). Sulfuric acid scarification effects on Brachiaria brizantha, B. humidicola and Panicum maximum seed dormancy release. Revista Brasileira de Sementes 29(2):143-147. https://doi.org/10.1590/S0101-31222007000200020

Ussiri DAN, Lal R, Jacinthe PA (2006). Soil properties and carbon sequestration of afforested pastures in reclaimed mine soils of Ohio. Soil Science Society of America Journal 70(5):1797-1806. https://doi.org/10.2136/sssaj2005.0352

Vítková M, Müllerová J, Sádlo J, Pergl J, Pyšek P (2017). Black locust (Robinia pseudoacacia) beloved and despised: A story of an invasive tree in Central Europe. Forest Ecology and Management 384:287-302. https://doi.org/10.1016/j.foreco.2016.10.057

Wang B, Liu G, Xue S (2012). Effect of black locust (Robinia pseudoacacia) on soil chemical and microbiological properties in the eroded hilly area of China’s Loess Plateau. Environmental Earth Sciences 65(3):597-607. https://doi.org/10.1007/s12665-011-1107-8

Xu Y, Wang T, Li H, Ren C, Chen J, Yang G, … Wang X (2019). Variations of soil nitrogen-fixing microorganism communities and nitrogen fractions in a Robinia pseudoacacia chronosequence on the Loess Plateau of China. Catena 1(174):316-323. https://doi.org/10.1016/j.catena.2018.11.009

Zhang H, Liu Z, Chen H, Tang M (2016). Symbiosis of arbuscular mycorrhizal fungi and Robinia pseudoacacia L. improves root tensile strength and soil aggregate stability. PloS One 11(4):e0153378. https://doi.org/10.1371/journal.pone.0153378

Zobel B, Talbert J (1984). Applied forest tree improvement. John Wiley & Sons: New York, USA.

Downloads

Published

2020-12-21

How to Cite

ROMAN, A. M., MORAR, I. M., TRUTA, A. M., DAN, C., SESTRAS, A. F., HOLONEC, L., IORAS, F., & SESTRAS, R. E. (2020). Trees, seeds and seedlings analyses in the process of obtaining a quality planting material for black locust (Robinia pseudoacacia L.). Notulae Scientia Biologicae, 12(4), 940–958. https://doi.org/10.15835/nsb12410867

Issue

Section

Research articles
CITATION
DOI: 10.15835/nsb12410867