Ability of Non-Pathogenic Fusarium oxysporum Strain Fo47 to Suppress Rhizomania Disease of Sugar Beets in Morocco


  • Fatima NOUAYTI Ecole Nationale d’Agriculture de Meknès (ENA-Meknès), Department of Plant Protection, Phytopathology Unit, Km10, Rte Haj Kaddour, BP S/40, Meknès 50001 (MA)
  • Ilham MADANI Moulay Ismail University, Faculty of Sciences. Department of Biology PO Box 11201 Zitoune Meknes (MA)
  • Abdessalem TAHIRI Ecole Nationale d’Agriculture de Meknès (ENA-Meknès), Department of Plant Protection, Phytopathology Unit, Km10, Rte Haj Kaddour, BP S/40, Meknès 50001 (MA)
  • Abdelali BLENZAR Moulay Ismail University, Faculty of Sciences. Department of Biology PO Box 11201 Zitoune Meknes (MA)
  • Rachid LAHLALI Ecole Nationale d’Agriculture de Meknès (ENA-Meknès), Department of Plant Protection, Phytopathology Unit, Km10, Rte Haj Kaddour, BP S/40, Meknès 50001 (MA)




Beet Necrotic Yellow Vein Virus; biocontrol; Fusarium oxysporum strain Fo47; Trichoderma harzianum strain 908


Rhizomania is one of the most devastating diseases of sugar beet worldwide. The disease poses a serious threat to Moroccan production and it is capable of significantly decreasing quality and yield of sugar beet plantations. The long-term survival of its fungal vector (Polymyxa betae) in soil makes it a very difficult disease to manage. Therefore, this study investigated the potential of a non-pathogenic fungal Fusarium oxysporum strain Fo47 to control Polymyxa betae. This biocontrol agent was applied as soil treatment, seed treatment, or a combination of the both treatments. A bio-test was performed on treated soil. After four weeks of culture, the roots of sugar beet seedlings were retrieved and analyzed by the DAS-ELISA test. Results indicated that F. oxysporium Fo47 reduced the activity and survival of P. betae when compared to a reference biocontrol agent Trichoderma harzianum, which only revealed significant in reducing the viral load of Beet Necrotic Yellow Vein Virus (BNYVV) as seed treatment. The non-pathogenic Fusarium oxysporum Fo47 was more effective as soil treatment and allowed almost the same reduction of BNYVV virus concentration as T. harzianum 908. Therefore, our findings emphasizes that the performance of the biocontrol agent depends on the method of application.


Metrics Loading ...


Aksoy HM, Yilmazz NDK (2008). Antagonistic effects of natural Pseudomonas putida biotypes on Polymyxa betae Keskin, the vector of beet necrotic yellow vein virus in sugar beet. Journal of Plant Disease Protection 115:241-246.

Alabouvette C, Olivain C, Migheli Q, Steinberg C (2009). Microbiological control of soil-borne phytopathogenic fungi with special emphasis on wilt-inducing Fusarium oxysporum. New Phytologist 184:529-544.

Anonymous (2005). Premier signalement du beet necrotic yellow vein benyvirus au Maroc [First report of beet necrotic yellow vein benyvirus in Morocco]. EPPO Bulletin Service d’Information 7:11.

Anonymous (2006). Beet necrotic yellow vein virus (benyvirus). Bulletin OEPP/EPPO Bulletin 36:429-440.

Anonymous (2010). Détection du virus de la rhizomanie de la betterave, beet necrotic yellow vein virus (BNYVV) Test biologique : MOA 011 partie A version 1a [Detection of beet rhizomania virus, beet necrotic yellow vein virus (BNYVV) Biological test: MOA 011 part A version 1a].

Asef MR, Goltapeh GM, Danesh YR (2008). Antagonistic effects of Trichoderma species in biocontrol of Armillaria mellea in fruit trees in Iran. Journal of Plant Protection Research 48(2):213-222.

Asher MJC (1993). Rhizomania. In: The sugar beet crop. Cooke DA, Scott RK (Eds). Chapman and Hall, London, Oxford University Press, New York pp 311-346.

Bornemann K, Varrelmann M (2011). Analysis of the resistance-breaking ability of different beet necrotic yellow vein virus isolates loaded into a single Polymyxa betae population in soil. Phytopathology 101:718-724.

Brunner K, Zeilinger S, Ciliento R, Woo SL, Lorito M, Kubicek CP, Mach RL (2005). Improvement of the fungal biocontrol agent Trichoderma atroviride to enhance both antagonism and induction of plant systemic disease resistance. Applied and Environmental Microbiology 71:3959-3965.

Brunt AA, Richards K (1989). Biology and molecular biology of furoviruses. Advances in Virus Research 36:1-32.

Camporota P, Bordei V, Richard-Molard M (1988). Lutte biologique contre Polymyxa betae (Keskin) au moyen de Trichoderma sp. Résultats préliminaires in vivo [Biological control of Polymyxa betae (Keskin) using Trichoderma sp. Preliminary results in vivo]. Agronomie 8:223-225.

Chitarra GS (2003). Germination inhibitors of fungal spores: Identification and mode of action. Ph.D. Thesis, Wageningen University, Wageningen, The Netherlands, pp 120.

D’Ambra V, Mutto S (1986). Parassitismo di Trichoderma harzianum sucistosori di Polymyxa betae [Parasitism of Trichoderma harzianum sucistosori of Polymyxa betae]. Journal of Phytopathology 115:61-72.

Divya Rani V, Sudini H (2013). Management of soilborne diseases in crop plants: an overview. International Journal of Plant, Animal and Environmental Sciences 3:156-164.

Fravel DR, Olivan C, Alabouvette C (2003b). Fusarium oxysporum and its biocontrol. New Phytologist 157:493-502.

Godhani PH (2011). Evaluation of two antagonists against wilt disease of chickpea. Karnataka Journal of Agriculture Science 23:795-797.

Haggag WM, Kansoh AL, Aly AM (2006). Proteases from Talaromyces flavus and Trichoderma harzianum purification, characterization and antifungal activity against brown spot disease on faba bean. Plant Pathology Bulletin 15:231-239.

Heydari A, Pessarakli M (2010). A review on biological control of fungal plant pathogens using microbial antagonists. Journal Biological Science 10:273-290.

ITB (2010). Nématode à kystes et rhizomanie: quelle gestion durable ? La technique betteravière. [Nematode with cysts and rhizomania: what sustainable management? The sugar beet technique]. ITB, N° 935 du 21 Septembre 2010.

Jakubilkova L, Subikova V, Nemkovic M, Farkas V (2010). Selection of natural isolates of Trichoderma spp. for biocontrol of Polymyxa betae as a vector of virus causing rhizomania sugar beet. Biologia 61:347-351.

Jin X, Custis D (2011). Biological control microencapsulating aerial conidia of Trichoderma harzianum through spray drying at elevated temperatures. Biological Control 56:202-208.

Jorjani M, Heydari A, Zamanizadeh H, Rezaee S, Naraghi L (2011). Development of Pseudomonas fluorescens and Bacillus coagulans based bioformulations using organic and inorganic carriers and evaluation of their influence on growth parameters of sugar beet. Journal of Biopesticides 4:180-185.

Kakvan N, Heydari A, Zamanizadeh HR, Rezaee S, Naraghi L (2013). Development of new bioformulation using Trichoderma and Talaromyces fungal antagonists for biological control of sugar beet damping-off disease. Crop Protection 53:80-84.

Kaur R, Kaur J, Singh RS (2010). Nonpathogenic Fusarium as a biological control agent. Plant Pathology Journal 9:79-91.

Kumar S (2013). Trichoderma: a biological weapon for managing plant diseases and promoting sustainability. International Journal of Agriculture Science and Medical Veterinary 1:106-121.

Mansouri M, Heydari A, Hassanzadeh N, Rezaee S, Naraghi L (2013). Evaluation of Pseudomonas and Bacillus bacterial antagonists for biological control of cotton Verticillium wilt disease. Journal of Plant Protection Research 53:154-157.

Naraghi L, Heydari A, Askari H, Pourrahim R, Marzban R (2014). Biological control of Polymyxa betae, fungal vector of rhizomania disease of sugar beets in greenhouse conditions. Journal of Plant Protection Research 54:109-114.

Naraghi L, Heydari A, Rezaee S, Razavi M (2012a). Biocontrol agent Talaromyces flavus stimulates the growth of cotton and potato. Journal of Plant Growth Regulation 31:471-477.

Naraghi L, Heydari A, Rezaee S, Razavi M, Afshari-Azad H (2010a). Biological control of greenhouse cucumber Verticillium wilt disease by Talaromyces flavus. Phytopathologia Mediterranea 49:321-329.

Naraghi L, Heydari A, Rezaee S, Razavi M, Afshari-Azad H (2012b). Promotion of growth characteristics in greenhouse cucumber and tomato by Talaromyces flavus. International Journal of Agricultural Science Research 2:129-141.

Naraghi L, Heydari A, Rezaee S, Razavi M, Jahanifar H (2010b). Study on antagonistic effects of Talaromyces flavus on Verticilliumalbo-atrum, the causal agent of potato wilt disease. Crop Protection 29:658-662.

Naraghi L, Heydari A, Rezaee S, Razavi M, Jahanifar H, Mahmoodi Khaledi E (2010c). Biological control of tomato Verticillium wilt disease by Talaromyces flavus. Journal of Plant Protection Research 50:360-365.

Nelson EB (2004). Biological control of oomycete and fungal pathogens. In: Goodman RM (Ed). Encyclopedia of Plant and Crop Science. Marcel Dekker Inc pp 137-140.

Ojaghian M (2011). Potential of Trichoderma spp. and Talaromyces flavus for biological control of potato stem rot caused by Sclerotinia sclerotiorum. Phytoparasitica 39:185-193.

Putz C, Merdinoglu D, Lemaire O, Stocky G, Valentin P, Weidemann S (1990). Beet necrotic yellow vein virus, causal agent of sugar beet rhizomania. Review of Plant Patholology 69: 247-254.

Resca R, Basaglia M, Poggiolini S, Vian P, Bardin S, Walsh UF, Enriquez Barreiros CM, O'Gara F, Nuti MP, Casella S, Peruch U (2001). An integrated approach for the evaluation of biological control of the complex Polymyxa betae/Beet Necrotic Yellow Vein Virus, by means of seed inoculants. Plant and Soil 232:215-226.

Richards KE, Tamada T (1992). Mapping functions on the multipartite genome of beet necrotic yellow vein virus. Annual Review of Phytopathology 30:291-313.

Rush CM (2003). Ecology and epidemiology of benyviruses and plasmodiophorid vectors. Annual Review of Phytopathology 41:567-592.

Rush CM, Heidel GB (1995). Furovirus diseases of sugar beets in the United States. Plant Disease 79:868-875.

Schmit JF, Meunier A, Stas A, Legrève A, Bragard C, Wauters A (2002). Véritable explosion de la rhizomanie en 2002 [Real explosion of rhizomania in 2002]. Le Betteravier 388:8-10.

Scholten OE, Lange W (2000). Breeding for resistance to rhizomania in sugar beet: A review. Euphytica 112:219-231.

Schuster A, Schmoll M (2010). Biology and biotechnology of Trichoderma. Applied Microbiology and Biotechnology 87:787-799

Shalini N, Lata KP, Kotasthane AS (2006). Genetic relatedness among Trichoderma isolates inhibiting a pathogenic fungi Rhizoctonia solani. African Journal of Biotechnology 5:580-584.

Shcherbakova LA, Odintsova TI, Stakheev AA, Fravel DR, Zavriev SK (2015). Identification of a novel small cysteine-rich protein in the fraction from the biocontrol Fusarium oxysporum strain CS-20 that mitigates Fusarium wilt symptoms and triggers defense responses in tomato. Frontiers in Plant Science 6.

Smith SN, Snyder WC (1971). Relationship of inoculum density and soil types to severity of fusarium wilt of sweet potato. Phytopathology 61:1049-1051.

Snaiki J, Nadif A, Ouhssine M (2005). Détection de deux pathotypes d’Erwinia causant la maladie de la pourriture molle sur la betterave à sucre dans la plaine du Gharb au Maroc [Detection of two Erwinia pathotypes causing soft rot on sugar beet in the Gharb plain in Morocco]. EPPO Bulletin 35:537-540.

Van Regenmortel MHV, Fauquet CM, Bishop DHL, Carstens EB, Estes MK, Lemon SM, Maniloff J, Mayo MA, Mc-Geoch DJ, Pringle CR, Wickner RB (2000). Virus taxonomy: Seventh report of the international committee on taxonomy of viruses. Academic Press, San Diego, California.

Whipps JM (2001). Microbial interactions and biocontrol in the rhizosphere. Journal of Experimental Botany 52:487-511.

Woo SL, Lorito M (2007). Exploiting the interactions between fungal antagonists, pathogens and the plant for biocontrol. In Novel Biotechnologies for Biocontrol Agent Enhancement and Management. Springer Netherlands pp 07-130.




How to Cite

NOUAYTI, F., MADANI, I., TAHIRI, A., BLENZAR, A., & LAHLALI, R. (2018). Ability of Non-Pathogenic Fusarium oxysporum Strain Fo47 to Suppress Rhizomania Disease of Sugar Beets in Morocco. Notulae Scientia Biologicae, 10(1), 137–142. https://doi.org/10.15835/nsb10110231



Research articles
DOI: 10.15835/nsb10110231