Comparison of Cuminaldehyde Contents from Cell Suspension Cultures and Seeds of [Bunium persicum (Boiss.) B. Fedtsch.]

Sara KHOSRAVINIA1, Seyed Mahdi ZIARATNIA2*, Abdolreza BAGHERI1, Ghadir RAJABZADEH1, Seyed Hassan MARASHI1

1 Ferdowsi University of Mashhad, Department of Biotechnology and Plant Breeding, Mashhad, Iran
2 Research Institute of Food Science and Technology (RIFST), P.O. Box: 91735-139, km 12 Quchan highway, Mashhad, Iran; m.ziaratnia@rifst.ac.ir (*corresponding author)

Abstract

The cell suspension culture and seed samples of Bunium persicum were extracted by supercritical fluid, hydrodistillation and solvent methods and analyzed by Gas Chromatography. In this study to compare the different methods of extractions, cuminaldehyde was targeted as one of the Black zira essential oil constituent. For callus induction the germinated seeds were cultured as explants on Murashige and Skoog medium supplemented with 2 mg/l 2,4-dichlorophenoxy acetic acid and 0.5 mg/l kinetin (treatment A) as well as 2 mg/l α-naphthalene acetic acid and 0.5 mg/l 6-benzyl aminopurine (treatment B) and followed by cells suspension cultures establishment for the first time. The results of cell culture showed that cells from treatment B have a growth rate higher than A. All extracts were dissolved in 1 ml hexane and analyzed by Gas Chromatography. According to the Gas Chromatography analysis, cuminaldehyde was not detected in the supercritical fluid samples, while it was present in hydrodistillation and solvent extract. Cuminaldehyde percentage in cell and seed solvent extracts was 4.65% and 18.61% respectively. Gas Chromatography results also showed that no cuminaldehyde is present in media extracts, means no cuminaldehyde has been secreted into the medium.

Keywords: cuminaldehyde, gas chromatography, hydrodistillation, solvent, supercritical fluid extraction

Introduction

Plant cell cultures are an attractive alternative source to whole plant for production of high-value secondary metabolites (Ravishankar et al., 1999). There are numerous plant secondary metabolites with interesting biological activities which have found applications in pharmaceutical industries, cosmetics, biopesticides and agrochemicals, flavors or food additives, odours and fragrances, and natural pigments (Goossens et al., 2003). Several successful studies on commercial production of secondary metabolites by plant cell suspension cultures have been reported such as shikonin from Lithospermum erythrorhizon, berberine from Coptis japonica (Fujita, 1988) and taxol from Taxus species (Bleichert and Guenard, 1990).

Black zira [Bunium persicum (Boiss.) B. Fedtsch.] (Zireh Irani, Zireh kuhi, Black cumin), is one of the important medicinal and aromatic plants in Iran that belongs to Apiaceae family. Black zira as a perennial herb grows in Northern areas of Khorasan, Kerman, East of Zagros to Bandar Abbas and South of Alborz in Iran. It is also distributed in central Asia, Pakistan, Afghanistan, Keshmir, and Pamir (Azizi, 2005). The seeds are consumed widely as a condiment. In an indigenous remedy, seeds are regarded as stimulants, carminatives and found to be useful in diarrhoea and dyspepsia treatment (Foroumadi et al., 2002). In addition, the plant is used for culinary purposes, flavoring foods and beverages (Pourmortazavi et al., 2005). It is also reported that Black zira seeds contain essential oils (up to 7%) rich in monoterpene aldehydes. The main constitutes of essential oils are cuminaldehyde, p-mentha-1,3-dien-7-al and p-mentha-1,4-dien-7-al (Thappa et al., 1991). Cuminaldehyde, 4-isopropylbenzaldehyde, is a natural organic compound with the molecular formula C12H10O. It is a benzaldehyde with an isopropyl group substituted in the 4-position (Fig.1). It has a pleasant smell and contributes to the aroma of Apiaceae family oils. It is also used commercially in perfumes and other cosmetic products applied in skin areas likely to be exposed to sunshine, excluding rinse-off products (Foroumadi et al., 2002). In addition, it has inhibitory effect on tyrosinase (Parvez1 et al., 2007), toxic activity against Acanthoscelides obtectus (Regnault-Roger and Hamraud, 1995), suppressant melanin formation in cultured murine melanoma cells (Nitoda et al., 2008) and the most inhibition of β-carotene oxidation and lipid peroxidation (Sharififar et al., 2010).

In order to extract from cells suspension cultures different solvents including hexane (Brown and Charwood, 1986), ethyl acetate (Yamada et al., 2002) and methanol (Ceoldo et al., 2009) were used. The extraction of essential oil components using solvent at high pressure, supercritical fluids, has received much attention in the past several

Received 13 June 2012; accepted 02 November 2012
on simple medium containing 0.5% sucrose and 0.7% agar for solidification. pH was adjusted on 5.8 using 1N NaOH or 1N HCl before autoclaving at 121°C for 20 min. All the cultures were incubated in the dark conditions at 4°C for 3 months.

The germinated seeds were cultured on MS medium (Murashige and Skoog, 1962) supplemented with 3% sucrose, 2 mg/l 2,4-D and 0.5 mg/l Kin (treatment A) and 2 mg/l NAA and 0.5 mg/l BA (treatment B) and 0.7% agar. Cultures were incubated at 23±2°C in dark conditions for callus induction. Calli were subcultured in a similar medium at 4-week intervals.

Chemicals

Kinetin (Sigma-Aldrich, Milano, Italy), 6-benzylaminopurine (Sigma-Aldrich, Milano, Italy), α-naphthalene acetic acid (Merck, Darmstadt, Germany) and 2,4-dichlorophenoxy acetic acid (Merck, Darmstadt, Germany) were chemicals for callus induction and establishment of cell suspension cultures. Cuminaldehyde standard (Merck, Darmstadt, Germany) and hexane solvent (Merck, Darmstadt, Germany) were used for standardization and extraction respectively.

Suspension cultures

For establishment of cell suspension cultures, 25-day-old yellow callus (300 mg fresh weight) was inoculated into 100 ml Erlenmeyer flasks containing 15 ml MS liquid medium similar to that used for callus induction cultures. All cultures flask were then placed on a shaker (120 rpm) at 23±2°C in dark conditions. The cells suspension cultures were subcultured every 7-10 days in 15 ml of fresh medium for 6 months. After establishment of the cell cultures, to get the real suspension cultures, the cells were sieved with a 210 µm sterile stainless steel filter (Fig. 2).

Materials and methods

Plant materials and Callus induction

The seeds of Black zira were collected from the experimental farm of Ferdowsi University of Mashhad (36°16’ N and 59°36’ E), Iran. Seeds were washed in running tap water and then disinfected by immersion in 70% (v/v) ethanol for 1 min followed by 30 min in 1% (v/v) sodium hypochlorite for surface sterilization. To remove the adherent residue, seeds were finally rinsed with sterile distilled water for three times. Sterilized seeds were cultured

Fig. 1. Chemical structures of cuminaldehyde

Fig. 2. Callus culture of Bunium persicum in MS solid medium, 3 month after inoculation (a) and Cell suspension cultures. Aggregative cells, 8 weeks after culture (b) and separated cells after sieve (c)
were separated from medium through vacuum filtration using a pre-weighed filter paper (Whatman no. 4). The filtrated cells were washed three times with distilled water to remove medium components and then any excess water removed before fresh weight measurement. To measure the dry weight, cells were placed in an oven at 40 °C until constant weight and the dry cell weight was then calculated.

Extraction of intracellular cuminaldehyde by solvent

Hundred g of fresh cells of A and B treatments were dried in an oven at 40°C. Dried cells of A and B and 2 g seeds as control were powdered in a mortar and pestle and consequently extracted in the presence of hexane. The filtrate extract was concentrated by rotary evaporated at 40°C and finally kept at 4 °C until use for Gas Chromatography analysis. The crude extract weight from A, B cells and seeds were 21.7 mg, 24.2 mg and 31 mg respectively.

Supercritical fluid extraction (SCF)

In this study, 7 g of dried B cells and 2 g seeds were powdered and extracted with Supercritical CO\(_2\) under 200 atm pressure and 45°C temperature for 60 min static followed by 30 min dynamic (single run for each plant). A Dura flow manual variable restrictor (Ki) was used in the SCF system to collect the extracted analytics. The supercritical CO\(_2\) flow rate through the Dura flow restrictor was approximately 3 ml/min (compressed). The extracted analytics were collected in a 30 ml ethanol in a 50 ml volumetric flask. Final extracts weight from B cells and seed were 27 mg and 50 mg respectively.

Hydrodistillation

The samples (50 g seed, 4 g and 6 g dried A and B cells respectively) were extracted by hydrodistillation system for 1.5 h, using a Clevenger-type apparatus, according to the European Pharmacopoeia (1975). The volatile distillate was collected over anhydrous sodium sulphate and refrigerated until use for Gas Chromatography analysis. The yield of the seed oil was 2.9% v/w based on plant dry weight.

Determination of secretory cuminaldehyde

In order to determine the concentration of secreted cuminaldehyde into the media, 10 ml filtrated medium culture of A and B treatments were freeze-dried. The dry weight for extracts from A and B medium was 18.5 mg and 22.3 mg respectively.

Gas Chromatography (GC) Analysis

For comparison of different extraction methods, cuminaldehyde was targeted as one of the Black zira essential oil and constitutes.

Gas Chromatography was performed on a Varian PU-4500 chromatograph, with a FID and a CP Sil 5CB column (30 m × 0.25 mm i.d., 0.25 mm film thickness). The oven temperature was programmed from 80°C to 200°C at 8°C/min and kept 20 min at 200°C. The carrier gas was Ar with a flow rate of 1.1 ml/min. Injector and detector temperature were set at 200°C and 205°C respectively. The injection volume for the seed samples and cuminaldehyde standard was 0.5 μl and for the media and cell samples, 5 μl.

Results and discussion

Effect of plant growth regulators on cell growth

Bunium persicum callus cultures were derived from the germinated seeds on MS medium supplemented with two treatments, A (2 mg/l 2,4-D and 0.5 mg/l Kinetin) and B (2 mg/l NAA and 0.5 mg/l BA), within 10-12 days of incubation in dark conditions. Yellow, friable and fresh callus were observed on both combinations. There are many reports for the successful application of different plant growth regulator combinations for callus induction and cell suspension cultures in several species by other researcher (Abenavoli et al., 2003; Ceoldo et al., 2009; Narayan et al., 2005). In this investigation the best growth of *Bunium persicum* callus was obtained on B treatment. However, other study indicated that callus of Black zira have a well growth on MS medium containing 2 mg/l NAA and 2 mg/l Kin (Vlizadeh et al., 2006). Wakhlu (1990) recom-

Fig. 3. Effect of different combinations of phytohormone on fresh (a) and dry (b) weight of cell from suspension cultures of *Bunium persicum* in a 5-week period in MS liquid medium. A (2 mg/l 2,4-D and 0.5 mg/l Kinetin) and B (2 mg/l NAA and 0.5 mg/l BA)
is known as one of the major constituent of seed essential oil of Black zira which possesses multiple biological activities (e.g. antifungal, antioxidant and anti-melanoma) (Nitoda et al., 2008; Shahsavari et al., 2008; Takayuki et al., 2007).

Brown and Charlwood (1986) reported that in Pelargonium fragrans (Willd.), the undifferentiated callus accumulated negligible amounts of monoterpene components, whose numbers and concentrations of these components are more than what in parent plants.

Based on our GC results no cuminaldehyde was present in the hexane extract of treatments A and B media. It is therefore can be concluded that no cuminaldehyde even at low concentration has been excreted into the medium (Tab. 1).

Comparison of different extraction methods based on cuminaldehyde concentration in seed samples

By comparing the cuminaldehyde content in hydrodistillation and solvent extract, it was revealed that cuminaldehyde percentage in seed extracts were significantly different and was 58.87% and 18.61% respectively. It was also found that no cuminaldehyde is present in SCF extract of seeds (Tab. 1). Obviously cuminaldehyde percentage as a target compound, in hydrodistillation was in much higher amount than solvent extraction samples and was also the major

<table>
<thead>
<tr>
<th>Extraction Methods</th>
<th>Seed</th>
<th>Cell Suspension Culture</th>
<th>Medium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hexane</td>
<td>18.61%</td>
<td>4.63%</td>
<td>4.73%</td>
</tr>
<tr>
<td>Hydrodistillation</td>
<td>58.87%</td>
<td>Not detected</td>
<td>Not detected</td>
</tr>
<tr>
<td>Supercritical Fluid</td>
<td>Not detected</td>
<td>Not detected</td>
<td>Not detected</td>
</tr>
</tbody>
</table>

Fig. 4. GC chromatogram of the cuminaldehyde standard (Arrow shows the cuminaldehyde pick)
constituted in hydrodistillation samples. It means that the composition and even the concentration of constituents of the extracts can be influenced by different extraction methods (Anklam et al., 1998; Azizi and Davareenejad, 2009; Mortazavi et al., 2010; Pourmortazavi et al., 2003, 2004; Salehi et al., 2008; Stashenko et al., 1996).

Pourmortazavi et al. (2005) have also compared the percentage of cuminaldehyde obtained from hydrodistillation and SCF. They concluded that cuminaldehyde was detected in both extraction methods, though in SCF it was at lower level. In our results no cuminaldehyde was found in SCF extract. On the other hand the hydrodistillation-derived cuminaldehyde in our experiment was markedly higher than that reported by them in the same extraction method. These differences can be attributed to the harvest time and conditions, climatic and seasonal factors. Technical differences can also be a reason for obtaining different results, for example static and dynamic times in SCF extraction in those two investigations were different. In reports of Agarwal et al. (1991) and Abduganiew et al. (1997), that black cumin seed were extracted with hydrodistillation, cuminaldehyde was also the major component.

Conclusion

In conclusion, the results of this study have shown that for production of more biomass, the treatment B is more suitable than A. It was also found that cells of treatment A are more susceptible to browning than cells of treatment B. Results also demonstrated, though hydrodistillation is a suitable method for extraction of cuminaldehyde from seeds, it is not favored for cell samples. According to the obtained results of this study for isolation of cuminaldehyde from cell samples, the hexane extract is recommended. The results have shown that two different hormonal treatments have no significant effect on cuminaldehyde content in cell samples of Bunium persicum.

Acknowledgements

The authors thank the Research Institute of Food Science and Technology (RIFST) for financial support.

References

Maisonneune S, Saint-Ruffine A (1975). European Pharmacolo-