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Abstract

Oxidative stress was induced by lead acetate (Pb) in Raphanus sativus seedlings grown in a hydroponic system using sand as substrate. 
Thirty day old acclimated seeds were treated for 7 days with five Pb levels (0 as control, 100, 200, 500 and 1000 mg l-1). Parameters such 
as growth, oxidative damage markers (lipid peroxidation, protein oxidation and hydrogen peroxide contents) and enzymatic activities 
of catalase (CAT) and peroxidase (POD) were investigated. Lead concentration in plant tissues increased with increasing of Pb levels. 
Shoot fresh weight, chlorophyll and carotenoid concentration were significantly decreased at 100 mg l-1 Pb. Lipid peroxidation, protein 
oxidation and H2O2 levels were increased at 500 and 1000 mg l-1 Pb compared to control treatment, in shoots. Peroxidase activity 
showed a straight correlation with H2O2 concentration, whereas CAT activity decreased only in shoots. These changes in enzymatic and 
non-enzymatic antioxidants showed that the Pb exposition had a significant disturbance on Raphanus sativus plantlets and affect the 
biochemical and physiological processes.
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Introduction

Heavy metal pollution of air and agricultural soils is 
one of the most important ecological problems on world 
scale. According to the Environmental Protection Agency 
(EPA), Pb is the most common heavy metal contaminant 
in the environment (Watanabe, 1997). It is a nonessential 
element in metabolic processes and may be toxic or le-
thal to organisms even when absorbed in small amounts 
(Walker et al., 1996).

Lead contamination in the plant environment is 
known to cause highly toxic effects on processes such as 
depression on seed germination (Wierzbicka and Obidz-
inska, 1998), the disturbance in mitosis (Liu et al., 1994; 
Wierzbicka, 1994), induction of leaf chlorosis ( Johnson 
and Proctor, 1977), toxicity of nucleoli (Liu et al., 1994), 
inhibition of root and shoot growth (Fargasova, 1994; Liu 
et al., 1994), reduction in photosynthesis (Poskuta et al., 
1988; Poskuta and Waclawczyk-Lach, 1995) transpira-
tion (Rolfe and Bazzaz, 1975), DNA synthesis (Gabara 
et al., 1992 ) and inhibition and activation of enzymatic 
activities (Van Assche and Cliisters, 1990). Lead not only 
affects plant growth and productivity but also enters into 
the food chain causing health hazards to man and animals 
(Seaward and Richardson, 1990).

lead toxicity is also known to induce oxidative stress 
through over production of reactive oxygen species (ROS) 
including superoxide radicals (O2

−), hydroxyl radicals 

(OH) and hydrogen peroxide (H2O2) (Reddy et al., 2005; 
Ruley et al., 2004; Verma and Dubey, 2003). These free 
radicals and hydrogen peroxides cause a variety of harm-
ful effects in plant cells, such as inhibition of adenosine 
triphosphate (ATP) production, lipid peroxidation, and 
DNA damage (MacFarlanc, 2003). All these eventually 
lead to cell death. To combat oxidative damage, plants 
have antioxidant defense system comprising of enzymes of 
superoxide dismutase (SOD), catalase (CAT), peroxidase 
(POD), glutathione reductase (GR), and the non-enzy-
mic constituents such as reduced glutathione (GSH) and 
ascorbate (As) that remove, neutralize, and scavenge ROS 
(Foyer et al., 1997; Lee et al., 1976; Navari-Lazzo and 
Quartacci, 2001). SOD dismutates O2

- to H2O2, and this 
is decomposed to H2O by POD and CAT, so that the ac-
cumulation of O2

- and H2O2 is effectively prevented (Liu 
et al., 2002).

Radish in considered to be a model cropand is widely 
used for studies related to heavy metal pollution (Khan 
and Frankland, 1983; Kostka-Rick and Manning, 1993). 
The advantage of using radish and other members of cab-
bage (Brassicaceae) family for heavy metal studies are well 
described by Mathe-Gaspar and Anron (2002) and it has 
economic and nutritional value, also is a rich source of two 
important medicinal compounds: peroxidases and isothi-
ocyanates (Curtis, 2003).

Lead was recognized as causing oxidative stress in 
plants, so radish may have a strong resistance to Pb, but 
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the non-specific absorption at 600 nM was subtracted. The 
concentration of MDA was calculated using coefficient of 
absorbance of 155 mM-1 cm-1. MDA content expressed as 
nM g-1 fresh weight.

Estimation of protein oxidation
The reaction of carbonyls with 2, 4-dinitrophenylhy-

drazine (DNPH) was used to determine the amount of 
protein oxidation, as described by Levine et al. (1990). The 
shoots of radish seedlings was homogenized in a 25 mM 
K-phosphate buffer (pH 7.0), containing 10 ml l-1 Triton 
X-100 at a proportion of 1:5 (w: v). The homogenate was 
centrifuged at 9000 g for 30 min at 4°C. After the DNPH-
reaction, the carbonyl concentration was calculated by ab-
sorbance at 370 nm, using the molar extinction coefficient 
21 M-1cm-1 and expressed as nM carbonyl mg-1protein.

Determination of hydrogen peroxide
The H2O2 concentration was determined according to 

Loreto and Velikova (2001). Approximately 0.1g of shoots 
was homogenized at 4ºC in 2 ml of 0.1% trichloroacetic 
acid (TCA) (w: v). The homogenate was centrifuged at 
12000 g for 15 min at 4ºC. Then, 0.5 ml of the supernatant 
was added to 0.5 ml of 10 mM K-phosphate buffer (pH 
7.0) and 1 ml of 1M KI. The H2O2 concentration of the 
supernatant was evaluated by comparing its absorbance at 
390 nM with a standard calibration curve. Hydrogen per-
oxide concentration was expressed as µM g-1 fresh weight.

Catalase and peroxidase assay
The frozen shoots material was homogenized in 50 

mM Tris-HCl buffer (pH 7.0). The supernatant solution 
was used to measure the activity of the enzymes, and the 
protein content was determined according to Bradford 
(1976).

Catalase (EC.1.11.1.6) activity was assayed by the 
method of Barber (1980). The reaction mixture consisted 
of enzyme extract, 5 mM H2O2 and 50 mM Tris-buffer 
(pH 7.0). After 1 min incubation at 25°C, the reaction 
was stopped by adding 1.0 ml of 2.5 N H2SO4. The resid-
ual H2O2 was titrated with 0.01N KMnO4 and measured 
spectrophotometrically at 240 nm. Catalase activity was 
expressed as ml H2O2 oxidized g−1 fresh weight min−1.

Peroxidase (EC.1.11.1.7) activity was assayed by the 
method of Kar and Mishra (1976). The reaction mixture 
contained 100 mM Tris-buffer (pH 7.0), 10mM pyrogallol 
and 5 mM H2O2. The reaction was started by adding 25μl 
enzyme solution and stopped after 5 min incubated at 
25°C by adding 1.0 ml 2.5 N H2SO4. The amount of purpy-
rogallin formed was measured spectrophotometrically at 
425 nm. The enzyme activity was expressed as change in 
absorbance units g−1 fresh weight min−1.

Data analysis
All data were analyzed in three replications and the ob-

tained data were evaluated statistically using Student’s t-
test, and least significant difference (LSD) was calculated 
at p < 0.05.

little is known about the effects of Pb on the physiological 
processes of radish seedlings. The objective of the present 
investigation is to study the effects of different concen-
trations of Pb on leaf of radish including growth, physi-
ological and biochemical processes such as the different 
pigments, soluble proteins, lipid peroxidation, protein 
oxidation and hydrogen peroxide contents; and the activi-
ties of some antioxidant enzymes (CAT and POD). The 
possible mechanisms of radish seedlings tolerance of Pb 
stress are briefly discussed in the present study.

Materials and methods

Plant material
Radish (Raphanus sativus, ‘Early Menu’) seeds were 

used for Petri-dish experiment. Seeds were surface steril-
ized with 0.1% HgCl2 for the prevention of fungal and 
bacterial contamination (Young, 1926); and were grown 
hydroponically in aerated diluted (1: 4) Hoagland’s nutri-
ent solution containing various concentrations of Pb (0, 
100, 200, 500 and 1000 mg l-1) were supplied exogenously 
as lead acetate [Pb(CH3COOH)2] for 24°C, 16/8 h light/
dark photoperiod and light intensity of 175 µM m-2 s-1. Af-
ter 7 days of Pb exposure, the seedling fresh weight was 
determined and the shoots sample were kept at -80°C for 
further analyses.

Chlorophyll and carotenoid determination
Fresh biomass (leaves) was homogenized in 80% ice-

cold acetone in the dark and then centrifuged at 10000g 
for 10 min at 4°C and the supernatant was used for the 
immediate determination of pigments. Absorbance of the 
solution was determined spectrophotometrically at 663, 
645 and 480 nM the contents of chlorophyll a, b, and car-
otenoid, respectively; with the following equations help of 
Arnon’s formulae (Arnon, 1949), for quantification of the 
total chlorophyll, chlorophyll a and chlorophyll b content 
in an 80% acetone extract: 
Total chlorophyll = 20.2 (A645) + 8.02 (A663)
Chlorophyll a = 12.7 (A663) - 2.69 (A645)
Chlorophyll b = 22.9 (A645) - 4.68 (A663)
And Carotenoids = (1000A480 - 3.27[chl a] - 104[chl b])/227

Chlorophyll and carotenoid concentrations were ex-
pressed as mg g-1fresh weight.

Estimation of lipid peroxidation
The level of peroxidation was measured in terms of ma-

londialdehyde (MDA) (a product of lipid peroxidation) 
content determined by the thiobarbituric acid (TBA) re-
action as described by Heath and Packer (1968). Frozen 
shoot was homogenized in 5 ml of 0.1% trichloroacetic 
acid (TCA). The homogenate was  centrifuged at 10000g 
for 15 min and 4.0 ml of 20% TCA containing 0.5% TBA 
was added. The mixture was heated at 95°C for 30 min 
and then quickly cooled on ice bath. The contents were 
centrifuged at 10000 g for 15 min and the absorbance of 
the supernatant was measured at 532 nM and the value for 
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Results

Growth and fresh weight
The results after 7th days of aqueous exposure of differ-

ent lead levels in Radish seedlings showed considerable 
reduction in growth in respective doses of lead. The fresh 
weight of seedlings decreased on increasing the concentra-
tion of lead, the fresh weight was observed 92, 67, 36 and 
20 mg/seedling in respective concentration of lead (100, 
200, 500 and 1000 mg l-1) in comparison to 125 mg per 
seedling of control.

Chlorophyll and carotenoid
Increased lead exposure was noted in total chlorophyll 

as for example, they were 0.368, 0.299, 0.121 and 0.031 
mg g-1 fresh weight of tissue in different concentration of 
lead (100, 200, 500 and 1000 mg l-1 Pb) in comparison 
to 0.406 mg g-1 fresh weight of control. Total carotenoids 
were 0.155, 0.114, 0.069 and 0.032 mg g-1 fresh weight of 
tissue in 100, 200, 500 and 1000 mg l-1 of lead in com-
parison with 0.198 mg g-1 fresh weight of control (Tab. 1). 
Effect of Pb on Chlorophyll content Chl a, Chl b, total 
chlorophyll, and total carotene contents in radish seed-
lings were significantly (p < 0.05) lower than control in all 
treatments (Tab. 1); although decrease in chlorophyll ‘b’ 
was more marked than chlorophyll ‘a’.

Lipid peroxidation, protein oxidation and hydrogen 
peroxide
The lipid peroxidation were increased from 3.80, 4.65, 

5.85 and 7.44 nM MDA mg-1 protein, the protein oxida-
tion were increased from 2.58, 3.42, 4.62 and 5.10 nM 
carbonyl mg-1 protein and the hydrogen peroxide were 
increased from 5.88, 7.19, 9.31 and 12.53 µM g-1 fresh 
weight of tissue, as compared to control where their values 
were 1.42, 2.22 and 3.38, respectively (Tab. 2).

Soluble proteins, CAT and POD
The soluble proteins were decreased from 46.5, 38, 

27.5 and 16.44 µg/g in 100, 200, 500 and 1000 mg l-1 of 
lead respectively as compared to control when it was 51.27 
µg/g fresh weight of tissue. The catalase (CAT) was de-
creased from 28, 24, 22 and 20 ml H2O2 hydrolysed g-1 
fresh weight of tissue and peroxidase (POD) activity was 
increased from 6.88, 11.19, 14.31 and 15.32 Δ.O.D. g-1 
fresh weight of tissue was noticed in all lead treatments as 
compared to control where their values were 37 and 2.38 
respectively (Tab. 3).

Discussion

Pb effects on growth, fresh and dry weight
Lead is not generally considered an essential element 

for the growth of plants, but may stimulate growth of some 
plants in small amounts (Dou, 1988). The results from the 
present study show inhibitory effect of Pb on Raphanus 
sativus in seedling growth and shoot weight, exposed to 

Tab. 1. Effect of lead on different pigments in radish (Raphanus 
sativus) seedlings

Chlorophyll 
(mg g-1 Fresh tissue weight)

Total carotenoid 
(mg/g)

Treatments a b Total
Control 0.260 ±0,007 0.119 ±0.009 0.406 ± 0.005 0.198 ± 0.004

Pb 
100 mg l-1 0.256 ± 0.003 0.110 ± 0.005* 0.368 ± 0.003 0.155 ± 0.003*

Pb 
200 mg l-1 0.205 ± 0.006* 0.083 ± 0.007* 0.299 ± 0.008* 0.114 ± 0.008*

Pb 
500 mg l-1 0.077 ± 0.008* 0.041 ± 0.004* 0.121 ± 0.004* 0.069 ± 0.006*

Pb 
1000 mg l-1 0.016 ± 0.002* 0.015 ± 0.008* 0.031 ± 0.002* 0.032 ± 0.007*

The averages of three replicates ± SE and (*) statistically significant at p < 0.05 level

Tab. 2. Effect of lead on lipid peroxidation (nM g-1 fresh 
weight), protein oxidation (nM carbonyl mg-1protein) and 
hydrogen peroxide (µM g-1 fresh weight) in radish (Raphanus 
sativus) seedlings

Treatments Lipid 
peroxidation

Protein 
oxidation

Hydrogen 
peroxide

Control 1.42 ± 0.39 2.22 ± 0.47 3.38 ± 0.54
Pb 100 mg l-1 3.80 ± 0.85 2.58 ± 0.63* 5.88 ± 0.78*
Pb 200 mg l-1 4.65 ± 0.77* 3.42 ± 0.77* 7.19 ± 1.88*
Pb 500 mg l-1 5.85 ± 1.15* 4.62 ± 0.82* 9.31 ± 1.69*

Pb 1000 mg l-1 7.44 ± 1.02* 5.10 ± 1.19* 12.53 ± 1.74*
The averages of three replicates ± SE and (*) statistically significant at p < 0.05 level

Tab. 3. Effect of lead on soluble proteins (µg/g fresh tissue 
weight), catalase (ml H2O2 hydrolysed g-1 fresh tissue weight) 
and peroxidase (Δ.O.D. g-1 fresh tissue weight) activities in 
radish (Raphanus sativus) seedlings

Treatments Soluble proteins Catalase Peroxidase
Control 51.27 ± 2.59 37.0 ± 0.57 2.38 ± 0.34

Pb 100 mg l-1 46.50 ± 1.55* 28.0 ± 0.53* 6.88 ± 0.38*
Pb 200 mg l-1 38.00 ± 0.57* 24.0 ± 0.88* 11.19 ± 0.88*
Pb 500 mg l-1 27.50 ± 0.54* 22.0 ± 0.84* 14.31 ± 0.69*

Pb 1000 mg l-1 16.44 ± 1.08* 20.0 ± 1.20* 15.32 ± 0.74*
The averages of three replicates ± SE and (*) statistically significant at p < 0.05 level

Fig. 1. Effect of lead on seedling growth in radish (Raphanus sativus).
The averages of three replicates ± SE and (*) statistically significant at p<0.05 level.
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ish (Anuradha and Rao, 2007), under Ni toxicity in wheat 
(Gajewska and Sktodowska, 2007), and under Al toxicity 
in cucumber (Perira et al., 2010). This suggests that the 
toxic effect of heavy metals is probably exerted through 
free radical generation.

Lead effect on carbonyl
Despite being a non-redox metal, and thus not directly 

producing ROS (Benavides et al., 2005), Pb can interfere 
with antioxidant defense systems. Under stressful condi-
tions the protective system can be over ridden by a rapid 
production of large amounts of ROS, leading to various 
structural modifications in proteins (Cargnelutti et al., 
2006). These oxidative modifications are characterized 
by the formation of carbonyl derivatives on side chains of 
histidine, arginine, lysine, and proline residues (Shacter et 
al., 1994). Halliwell and Gutteridge (1999) suggested that 
the oxidation of proteins to form carbonyls occurs via the 
hydroxyl radical, since neither H2O2 nor superoxide is re-
active enough to provoke oxidation. Carbonyl content is a 
sensitive indicator of oxidative damage to proteins (Levine 
et al., 1990), and levels of carbonylated proteins in plants 
demonstrate oxidative stress associated with heavy metals 
(Boscolo et al., 2003).

The data from the present study indicate an increase 
in protein oxidation levels in radish seedlings treated with 
Pb (Tab. 2). 

The accumulation of carbonyls in the shoot of radish 
studied indicates that the quantity of radicals generated 
exceeded the capacity of the antioxidant defensive system.

Our data demonstrated that the seedling exposure to 
1000 mg l-1 of Pb caused a remarkable increase in carbonyl 
formation, indicating that Pb promoted a high protein ox-
idation. This result is in agreement with that reported by 
Arvind and Prasad (2005) and Rellán-Álvarez et al. (2006) 
who noticed carbonyl accumulation in Ceratophyllum de-
mersum and Zea mays plants exposed to Cd. In another 
study, Cargnelutti et al. (2006) and Pereira et al. (2010) 
an increase in protein oxidation was showed in cucumber 
exposure to Hg and Al, respectively.

Effect of lead on hydrogen peroxide
Hydrogen peroxide also appears to play an important 

role in signal transduction during plant abiotic stress. 
H2O2 produced from oxidative burst functions, such as a 
local trigger of programmed cell death of challenged cell, 
causes a rapid cross-linking of cell wall proteins (Levine et 
al., 1994). However, H2O2 is a signaling molecule, it must 
have regulated synthesis, specific responses and cellular 
targets, and there must be mechanisms for its metabolism 
or removal subsequent to signaling events (Neill et al., 
2002). A possible component of a systemic signal is H2O2, 
whichst up an acclimatory response in unstressed regions 
of plant (Bhattacharjee, 2005). In the present study, the 
level of hydirogen peroxide was increased significantly, in 
the shoots of radish in all treatment with Pb compared 

100, 200, 500 and 1000 mg l-1 Pb during the whole experi-
ment (Fig. 1). Apparently, radish is more tolerant to Pb 
on an equimolar basis compared to Brassica. juncea (Liu 
et al., 2000) and Allium cepa (Liu et al., 1994). Gopal and 
Rizvi (2008) were showed that excess Pb reduce the fresh 
and dry weight in leaves of radish at 30 day (0.5 mM). The 
decrease of growth were shown in radish stressed with Cd 
(Anuradha and Rao, 2007) and in cucumber stressed with 
Al for 10 days (Perira et al., 2010). The results from Wierz-
bicka (1994) indicated that lead ions cause water deficit by 
disturbing water balance, which is one of the main factors 
which causes a poorer growth and development of plants. 
Seregin and Ivanov (1998) also observed 50% inhibition 
of root growth in maize at 10-4 M lead nitrate and brown-
ing of roots treated with Pb ions.

Lead effect on chlorophyll and carotenoid
As a visible symptom, the reduced chlorophyll and car-

otenoid concentrations can be used to monitor Pb induced 
damage in radish leaves (Tab. 1). In the present study, the 
reduction in chlorophyll concentration observed indi-
cates oxidative damage induced by Pb exposure, possibly 
due to the inhibition of aminolevulinic acid dehydratase, 
an important enzyme in chlorophyll biosynthesis (Pereira 
et al., 2006). Similar to our observations, the chlorophyll 
level was reduce in wheat treated with Ni (Gajewska and 
Sktodowska, 2007), in maize treated with Cd ( Jain et al., 
2007), in radish treated with Pb (Gopal and Rizvi, 2008) 
and in cotyledons cucumber treated with Aluminum (Per-
ira et al., 2010). Although the principal recognized role of 
carotenoids is to act as photoreceptive antenna pigment 
for photosynthesis, collecting wavelengths of light that are 
not absorbed by chlorophylls, their protective function 
against oxidative damage has also been recognized for sev-
eral decades (Larson, 1988). Perhaps the most important 
function of carotenoid is the dissipation of excess energy 
of excited chlorophyll and the elimination of ROS (Law-
lor, 2001).

Lead effect on MDA
Malondialdehyde is an oxidized product of membrane 

lipids, and accumulates when plants are exposed to oxida-
tive stresses. Malondialdehyde concentration is commonly 
considered a general indicator of lipid peroxidation as well 
as stress level (Chaoui et al., 1997; Ding et al., 2004). An 
increase in MDA content in radish seedlings grown under 
Pb stress was observed (Tab. 2), indicating a high level of 
lipid peroxidation. it is possible that the increase in MDA 
concentration in the radish seedling may be due to a in-
crease in polyunsaturated fatty acid concentration relative 
to saturated fatty acids, which has also been reported in 
radish under stressful conditions (Kramer et al., 1991). 
Our results show the conformity with the observations of 
Verma and Dubey (2003) in rice shoots and elevated the 
oxidative stress. Similar to our observations, lipid peroxi-
dation is reported to be induced under Cd toxicity in rad-
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oxide in the plants. Enhancement of POD activity in rad-
ish reflects its great capacity to acclimate to Pb stress by 
rapidly engaging an antioxidative defense system.

Conclusions

Thus, the finding that Raphanus sativus shows that it 
is good plant material for studying other aspects of abiotic 
stress resistance mechanisms. Based on the present work, 
it can be suggested that toxic concentrations of Pb cause 
oxidative stress, as evidenced by increased H2O2 forma-
tion, lipid peroxidation and oxidation of proteins in shoot 
of radish. In this study, a significant reduction in different 
parameters such as growth of shoot and roots, chlorophyll 
and carotenoid concentrations coupled with lipid peroxi-
dation, protein oxidation and hydrogen peroxide indicat-
ed that high Pb levels in nutrient solution produced toxic 
effects. It was proposed that the reduced growth in Pb of 
radish exposed to toxic levels of Pb might be induced by 
an enhanced production of toxic oxygen species and sub-
sequent lipid peroxidation. Moreover, it was possible to 
observe that Pb-tolerant plants developed some defense 
mechanisms against oxidative stress. Further studies are re-
quired to investigate whether the oxidative stress caused by 
Pb toxic levels is an early symptom that can trigger shoot 
growth inhibition.
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