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Abstract

Gmelina arborea Roxb. is medicinally and economically important tree species were selected for study. An experiment was conducted 
to determine the influence of arbuscular mycorrhizal (AM) fungus Glomus fasciculatum on salt stress tolerance of tree species Gmelina 
arborea. Mycorrhizal and nonmycorrhizal seedlings were treated with 100 mM and 200 mM concentration of NaCl. G. fasciculatum 
treated plant showed increase in fresh and dry weight, greater percentage of mycorrhizal colonization, higher accumulation of proline 
and chlorophyll content with increasing levels of salinity. G. fasciculatum colonization significantly increased tolerance of salinity, acid 
phosphatases, and Proline content and also antioxidant enzymes like peroxidase, catalase and superoxide dismutase at all levels of salinity 
treatments of Gmelina plants in comparison with non-mycorrhizal salinity treated plants. These results demonstrate that AM fungus (G. 
fasciculatum) is very effective in strengthening the tolerance of Gmelina arborea grown in arid and semi arid areas.
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Introduction

Salinity is a major problem in arid and semiarid trop-
ics. In India about 8.6 Mha of land area is affected by soil 
salinity (Pathak, 2000). Salt alters a wide array of meta-
bolic processes, culminating in stunted growth, and re-
duced enzyme activities and biochemical constituents 
(Muthukumarasamy and Panneerselvam, 1997). Proline is 
most common osmolyte in plants under stress conditions 
(Hasegawa et al., 2000) and act as a mediator of osmotic 
adjustment (Ashraf and Foolad, 2007) and serve as a hy-
droxyl radical scavenger (Alia et al., 1995). 

There is accumulating evidence that production of 
reactive oxygen species (ROS) is a major damaging fac-
tor in plants exposed to different environmental stresses, 
including salinity (Hernandez et al., 1995). Plants have 
evolved specific protective mechanisms, involving anti-
oxidant molecules and enzymes in order to defend them-
selves against oxidants ( Jiang and Zhang 2002; Nunez et 
al., 2003, 2004). 

Antioxidant mechanisms may provide a strategy to 
enhance salt tolerance in plants. Peroxidase (POX) and 
catalase (CAT) are involved in the defense mechanisms of 
plants in response to pathogens either by their participa-
tion in cell wall reinforcement, or by their antioxidant role 
in the oxidative stress generated during plant pathogen 
interaction (Mehdy, 1994). Cells under salt stress initially 
accumulate salts as free osmotica, however, a toxic specific 
ion effect appears once a certain threshold level of Na and/
or Cl accumulation has been reached integrity, enzymatic 
activity, protein and nucleic metabolism (Hasegawa et 

al., 2000; Mansour and Salama, 2004; Zhu 2001, 2002). 
Plants under stress produce some defense mechanisms to 
protect themselves from the harmful effect of oxidative 
stress. ROS scavenging is one among the common defense 
response against abiotic stresses (Vranova et al., 2002). 
ROS scavenging depends on the detoxification mechanism 
provided by an integrated system of non- enzymatically re-
duced molecules like ascorbate, glutathione and enzymat-
ic antioxidants (Prochazkova et al., 2001; Shrivali et al., 
2003). The primary antioxidant enzyme which converts 
superoxide to H2O2 and oxygen is superoxide dismutase 
(SOD) (Alscher et al., 2002). The key enzyme involved in 
H2O2 scavenging is also catalase which decomposes H2O2 
to water and oxygen. SOD and CAT are considered key 
components in the antioxidant response system as they 
regulate the cellular concentration of O2

- and H2O2 (Van 
Breusegem et al., 2001).

Arbuscular mycorrhizal (AM) fungi are mutualistic 
symbiosis provides direct physical link between soils to 
plant root (Barea and Jeffries, 1995; Gaur and Adhol-
eya, 2004). It is known that AM fungi can enhance plant 
growth and production under different conditions, in-
cluding various soil stresses (Daei et al., 2009; Dudhane 
et al., 2011; Evelin et al., 2009; Gaur and Adholeya 2004; 
Hildebrandt et al., 2007; Miransari et al., 2008)

The past decade has witnessed the rapid increase in 
interest in agroforestry and plantation as a land use prac-
tice across India. Of the tree species currently being tested 
for agro forestry or plantation in India, Gmelina arborea 
Roxb., is one moderately fast growing indigenous tree used 
for the purpose of timber, fuel and pulp production. The 
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Physiological and biochemical parameters
Total chlorophyll (Arnon, 1949), acid phosphatase 

(Lowry et al., 1954) and proline (Bates et al., 1973) were 
estimated in the AM inoculated seedlings. 

Protein extraction
Fresh tissue was ground in 3 ml of Extraction buffer 

containing 10 ml of extraction buffer containing 9.460 ml 
distilled water, 500 µl 1M Tris acetate buffer, 20 µl Triton 
X 100, 200 mg PVP, 1 µl 100 mM PMSF, and 2 µl of 0.5 M 
Sodium EDTA. the homogenate was centrifuged at 18000 
g at 5°C for 10 min and the supernatant was used for en-
zyme assay. Protein concentration was estimated accord-
ing to Lowry et al. (1954) using Bovine Serum Albumin 
as standard. 

Determination of antioxidant enzymes
Guiacol peroxidase (GPX) specific activity was de-

termined by Putter (1974), superoxide dismutase (SOD) 
activity was determined by Beauchamp and Fridovich 
(1971). Catalase (CAT) activities were determined by the 
degradation of H2O2 described by Aebi (1984). 

Statistical analysis
Statistical analysis was performed using one- way anal-

ysis of variance (ANOVA) followed by Duncan’s multiple 
range test (DMRT). The values are mean ± standard de-
viation for six treatments in each group. P values ≤ 0.05 
were considered significant.

Result and discussion

Salinity is one of the major limitations on crop pro-
ductivity and quality in the world. Hoorn et al. (2002) 
have shown that the negative effects of salinity are re-
duced growth rate and biomass, smaller leaves, osmotic 
effects, nutritional deficiency as well as mineral disorders.
In Gmelina we observed that shoots and root length was 
consequently increased after 45 and 75 days of AM inocu-
lation in mycorrhizal Gmelina plants as compared to non-
mycorrhizal Gmelina under low salinity level (100 mM). 
At high salinity level (200 mM) shoot and root length de-
creased as compared to low salinity level in mycorrhizal 
as well as nonmycorrhizal plants (Tab. 1). Ghollarata and 
Raiesi (2007) showed similar results in clover plants.As 
compared to nonmycorrhizal plants fresh and dry weight 
of mycorrhizal Gmelina plants increased at all salinity 
(100- 200 mM) levels after 45 and 75 days of AM inocula-
tion. After 100 days of AM inoculation and at high salinity 
level (200 mM), fresh and dry weight decreased in nonmy-
corrhizal plants as well as mycorrhizal plants (Tab. 1). It 
was observed that symbiotic association between AM fun-
gus Glomus fasciculatum and Gmelina strengthened in sa-
line environment by increasing shoot and root length and 
plant total biomass. Chulan and Martin (1992) reported 

biodiversity of AM colonization and AM fungi in differ-
ent forest tree species were studied in India (Kumar et al., 
2000; Verma and Jamaluddin, 1995). 

Hence the present studies were undertaken in an at-
tempt to improve the survival and growth of Gmelina ar-
borea plants in saline soil condition using AM fungi. 

Materials and methods

Plant material, AM inoculum and experimental design
Spores of Mycorrhizal fungus Glomus fasciculatum 

(Thaxter) Gerd. and Trappe Emend. Walker and Koske 
were isolated from rhizospheric soil of 15 year old Gmelina 
arborea plant from Botanical garden, Department of Bot-
any, University of Pune, Maharashtra, India by wet siev-
ing and decanting method (Gerdemann and Nicholson, 
1963), identified with the help of Manual (Schenck and 
Perez, 1990). The spores were multiplied on Bajara for two 
months and used as an inoculum (soil containing spores 
AM colonized roots and extraradical mycelium) for the 
treatment of Gmelina arborea seedlings. Non-mycorrhizal 
plants consist of same inoculum but autoclaved for 1 hr 
at 121°C. The seedlings were grown in soil (autoclaved 
for1hr at 121°C) from seeds of Gmelina arborea (brought 
from Synergy farm, Pasure, Tal-Bhor. Dist- Pune, Maha-
rashtra, India). 

Experimental design
The experimental design consisted of six treatments 

having non- AM inoculated and AM inoculated with 
three salinity levels (NaCl: 0, 100 mM in 100 ml D.W. and 
200 mM in 100 ml Distilled Water) per 3 kg of sterilized 
soil. Pots were arranged in completely randomized block 
design. Six replicates of each treatment were grown; total 
36 pots (three plants/pot) were arranged. Two-month-old 
seedlings of Gmelina were used for salinity experiment. 
NaCl was used for salinity stress. After 30 days of AM in-
oculation, NaCl treatment was given at eight days interval 
and it was continued till the last observation was taken. 
Observations were recorded after 45, 75 and 100 days after 
AM inoculation.

Morphological parameters
The analyzed morphological parameters were: shoot 

length, root length, fresh weight, dry weight, leaf area. The 
roots were cleared and stained by using the methods by 
Phillips and Hayman (1970) and the percentage of mycor-
rhizal colonization was estimated by the methods by grid-
line intersect method (Giovannetti and Mosse, 1980). At 
each salinity level, the mycorrhizal dependency (M.D.) of 
the plants was calculated according to Gerdemann (1975) 
as:

100×
salinity of  levelsame the at  plantizalnonmycorrh  weightDry

salinity of r level particulaa at  plantlmycorrhiza  weightDry
=M.D.  
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a significant shoot dry weight increment when Theobroma 
cacao was inoculated with VA-mycorrhiza. 

After 45, 75 and 100 days of AM inoculation percent 
AM root colonization in under non saline condition 
was 76%, 86% and 93% respectively. Under low salinity 
levels percent root colonization was 86%, 93% and 86% 
respectively, similarly in under high salinity levels 83%, 
83% and 86% respectively (Tab. 1). In our study percent 
root colonization increased at low salinity level. Percent 
root colonization was reduced with increasing salinity 
level and days of salinity treatments. Previous research has 
shown that salinity may reduce mycorrhizal colonization 
by inhibiting the germination of spores (Hirrel and Ger-
demann, 1980).

In mycorrhizal Gmelina plants (Gf ), Mycorrhizal De-
pendency was found to higher as compared to first (100 
mM) and second (200 mM) salinity level , but decreased 
with increasing time duration (45, 75 and 100 days of AM 
inoculation) (Fig. 1). Mycorrhizal dependency was in-
creased in mycorrhizal Gmelina plants under high salinity 
condition. Thus, it could be concluded that the benefits 
of symbiotic association between AM fungi and Gmelina 
plants increased under salinity conditions.

In Gmelina, after 45 and 75 days of inoculation the to-
tal chlorophyll content was significantly increased in myc-
orrhizal plants at all levels of salinity. But after 100 days of 
AM inoculation total chlorophyll content was decreased 
in high salinity level in mycorrhizal plants (Fig. 2). It was 

Tab. 1. Morphological parameters of Gmelina arborea Roxb after 45, 75 and 100 days after AM inoculation

Treatments Shoot lengt
(cm)

Root lengt
(cm)

Fresh weight
(gm)

Dry weight
(gm)

Percent root 
colonization

C
45days 12.16±0.471b 9.66±1.699b 0.837±0.040d 0.352±0.005e 0.00
75days 12.50±0.408b 15.66±2.494b 2.683±0.644c 0.548±0.082d 0.00

100days 14.66±2.494c 17.73±0.736c 4.122±0.876b 0.672±0.014f 0.00

C+1S
45days 14.00±0.471b 10.66±1.24b 2.404±0.041c 1.039±0.041d 0.00
75days 14.80±0.616b 17.66±2.494b 3.146±1.256bc 1.037±0.022c 0.00

100days 16.00±1.080c 21.50±0.408b 4.024±0.033b 1.384±0.013d 0.00

C+2S
45days 14.16±0.623b 9.66±1.699b 2.533±0.049c 1.177±0.040c 0.00
75days 14.00±0.816b 15.33±1.247b 3.097±0.698bc 1.254±0.115c 0.00

100days 15.00±2.160c 18.20±0.355c 3.853±0.138b 1.081±0.004e 0.00

Gf
45days 26.50±1.779a 20.33±1.69a 4.709±0.163b 2.020±0.005b 76.66±4.714b
75days 26.66±3.858a 27.00±1.632a 4.574±0.832abc 2.080±0.029b 86.66±4.714a

100days 30.33±1.433a 34.33±3.091a 7.005±0.408a 2.132±0.009c 93.33±9.428a

Gf+1S
45days 26.33±2.054a 22.66±1.24a 4.468±0.266b 2.310±0.033a 86.66±4.714a
75days 28.00±3.741a 29.00±1.632a 5.236±1.288ab 2.261±0.213b 93.33±4.714a

100days 33.50±2.160a 34.66±2.054a 6.336±1.406a 3.357±0.009a 86.66±4.714a

Gf+2S
45days 25.00±1.632a 23.33±1.24a 5.509±0.454a 2.375±0.021a 83.33±4.714ab
75days 27.00±1.632a 27.33±1.699a 6.389±1.479a 2.566±0.090a 83.33±12.47a

100days 25.00±0.816b 34.00±0.408a 6.015±0.271a 3.267±0.015b 86.66±12.47a
Note- Data was analyzed by Duncan’s multiple new range test and different small alphabetical letters indicate significant differences at p ≤ 0.05 level. C-Control, C+1S- 
Control with first salinity level, C+2S- Control with second salinity level, Gf- G. fasciculatum, Gf +1S- G fasciculatum with first salinity level, Gf +2S- G fasciculatum 
with second salinity level, first salinity level-100 mM NaCl, second salinity level-200 mM NaCl

Fig. 1. Mycorrhizal dependency in Gmelina arborea Roxb inoc-
ulated with Glomus fasciculatum after 45, 75 and 100 days after 
AM inoculation

Fig. 2. Total chlorophyll content in Gmelina arborea Roxb inoc-
ulated with Glomus fasciculatum after 45, 75 and 100 days after 
AM inoculation
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of the main mechanisms for increasing plant tolerance to 
salinity (Rabie and Almadini, 2005).

A number of nitrogen containing compounds accumu-
late in plants exposed to saline stress. The specific nitrogen 
containing compounds that accumulate in saline environ-
ments vary with plant species. Many plants accumulate 
Proline as a nontoxic and protective osmolyte under saline 
conditions. ( Jain et al., 2001; Pujol et al., 2001.) In the 
present study accumulation of Proline in non-mycorrhizal 
and mycorrhizal Gmelina plants increased significantly by 
raising salinity. In Gmelina, shoot and root Proline activ-
ity increased in mycorrhizal plants as compared to nonmy-
corrhizal plants at low salinity (100 mM) after 45 and 75 
days of inoculation. But at high salinity level (200 mM) 
and after 100 days of AM inoculation shoot as well as root 
Proline activity decreased in non AM inoculated control 
plants (C +2S) as well as AM inoculated plants (Gf +2S) 
(Fig. 4 and 5). Wang et al. (2003) reported that Proline ac-
cumulation in plants might be a symptom of stress in less 
salinity- tolerance species and its contribution to osmotic 
adjustment was apparently negligible as compared with 
K+. Based on this data, we conclude that non-mycorrhizal 
Gmelina plants are less salinity tolerant to saline condi-
tions as compared to AM Gmelina plants. Lotus glaber is 
known to accumulate high levels of Proline in response to 
salinity (Maiale et al., 2004). 

In our experiment we observed that, as compared to 
nonmycorrhizal Gmelina plants shoot POX activity of my-
corrhizal Gmelina plants increased at all salinity (100-200 
mM) levels after 45, 75 and 100 days of AM inoculation. 
But after 100 days of AM inoculation at high salinity level 
(200 mM) shoot POX activity was found to decrease in 
nonmycorrhizal Gmelina plants as well as AM inoculated 
plants (Fig. 6). Root POX activity consequently increased 
after 45 days of AM inoculation in all levels of salinity in 
mycorrhizal Gmelina plants as compared to nonmycor-
rhizal plants. After 75 and 100 days of AM inoculation 
root POX activity was found to be decreased in mycor-
rhizal Gmelina plants at high salinity levels. (Fig. 7) 

shown that the chlorophyll content depends on the salin-
ity level as well; on average, it was higher in inoculated 
plants, as already observed by some authors (Abdel and 
Mohamedin, 2000; Diaz and Garza, 2006). Moreover, 
inoculated plants under salt stress reach levels of photo-
synthetic capacity (estimated by the chlorophyll content) 
even superior to those of non-stressed plants, showing that 
in this respect mycorrhization is capable to fully counter-
balance salt stress. 

In Gmelina acid phosphatase activity significantly 
increased in mycorrhizal Gmelina plants as compared 
to nonmycorrhizal control plants at low and high salin-
ity level (100 mM and 200 mM) after 45, 75 and 100 
days of AM inoculation. (Fig. 3). Increased in acid phos-
phatase activity was similar to the earlier findings of AM-
inoculated Moringa concanensis plants (Panwar and Vyas, 
2002). Selvaraj (1998) found that due to inoculation of 
AM fungi, G. fasciculatum, acid and alkaline phosphatase 
activity increased in leaves and roots of Prosopis juliflora. 
The increased the phosphatase activity in mycorrhizal ba-
jra plants leading to increase in phosphate uptake under 
salinity stress condition. These findings indicate that the 
effect of AM fungi on phosphorus uptake constitute one 

Fig. 3. Acid Phosphatase activity in Gmelina arborea Roxb inoc-
ulated with Glomus fasciculatum after 45, 75 and 100 days after 
AM inoculation

Fig. 4. Shoot proline content in Gmelina arborea Roxb inocu-
lated with Glomus fasciculatum after 45, 75 and 100 days after 
AM inoculation

Fig. 5. Root proline content in Gmelina arborea Roxb inocu-
lated with Glomus fasciculatum after 45, 75 and 100 days after 
AM inoculation
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In tomato and citrus, salt-tolerance is attributed to the 
increased activities of SOD, Ascorbate peroxidase (APX), 
and CAT (Gueta-Dahan et al., 1997; Mittova et al., 2004). 
In Gmelina we have obtained similar results. An increase 
in the activity of SOD, POX, and CAT during salinity was 
observed in 45 days and 75 days of AM inoculation but 
at high salinity level ROS enzyme activity was found to 

The steady-state levels of ROS in plant cells may be 
determined by the balance between activities of SODs, 
POXs and CATs (Mittler, 2002). It has been reported that 
SOD specific activities were higher in roots and shoots of 
lettuce (Lactuca sativa) colonized by Glomus mosseae than 
in non-mycorrhizal roots, under drought stress (Ruiz-Lo-
zano et al., 1996). 

Fig. 6. Shoot peroxidase activity in Gmelina arborea Roxb inoc-
ulated with Glomus fasciculatum after 45, 75 and 100 days after 
AM inoculation

Fig. 7. Root peroxidase activity in Gmelina arborea Roxb inocu-
lated with Glomus fasciculatum after 45, 75 and 100 days after 
AM inoculation

Fig. 8. Shoot catalase activity in Gmelina arborea Roxb inocu-
lated with Glomus fasciculatum after 45, 75 and 100 days after 
AM inoculation

Fig. 9. Root catalase activity in Gmelina arborea Roxb inocu-
lated with Glomus fasciculatum after 45, 75 and 100 days after 
AM inoculation

Fig. 10. Shoot superoxide dismutase activity in Gmelina arborea 
Roxb inoculated with Glomus fasciculatum after 45, 75 and 100 
days after AM inoculation

Fig. 11. Root superoxide dismutase activity in Gmelina arborea 
Roxb inoculated with Glomus fasciculatum after 45, 75 and 100 
days after AM inoculation
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tion. Hence mycorrhizal inoculation to Gmelina plant for 
better survival under saline condition and use as in agro-
forestry system under reclamation of saline land. 
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