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Abstract

A model of the dynamics of plasma renin activity under the influence of various doses of captopril is formulated. The influence of 
captopril on renin angiotensin system is different from the effects of the other studied drugs – nifedipine and nicardipine. Captopril 
inhibits the feedback in renin-angiotensin system and the upward trend of the renin activity is a proportional of the intrinsic growth rate. 
This dependence can be described using a modified Verhulst logistic function is proposed. The model is identified using the Korelia-
Dynamics program. As optimization method for data identification a cyclic coordinate descent method is used. The residuals between 
the experimental data and the identified model are minimized applying least square or uniform fitting. The model allows prediction 
the effects of different captopril doses and permits the researcher to study the behavior of the renin angiotensin system under variety of 
conceivable conditions.
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Introduction

The renin angiotensin system (RAS) is a fundamental 
regulating mechanism of the body fluids, electrolyte ho-
meostasis and the arterial pressure (Atlas, 2007). The stim-
ulation and inhibition of this multi-component system 
involve multiple negative feedbacks between the different 
links. The later feedbacks have the capacity to modulate 
in a complex fashion the quality of regulation of the syn-
thesis and the secretion of every participating element on 
molecular level (Della Bruna et al., 1996; Ried, 1998). The 
major indicator of the condition of the system reflecting 
the equilibruim between the secretion and the degrada-
tion of renin is the plasma renin activity (PRA). When the 
equilibruim is moved in the direction of increased secre-
tion and increased activity of renin the result is increased 
plasma concentration of angiotensin II. The later due to 
activation of a negative feedback inhibits the secretion 
of renin aiming to recover the equilibrium ( Johns, 1990; 
Shricker et al., 1997) (Fig. 1).

The feedback mechanisms affecting renin are discussed 
in detail in (Xiao, 1997; Tolekova and Yankov, 2002).

Drugs such as nicardipine and nifedipine increase 
renin secretion (Tolekova et al. 1998; Tolekova and Yank-
ov, 2002). During the experiment this reflects in growing 
of PRA. Therefore the growth of PRA after application of 
these two drugs speeds up (Fig. 2).

After their metabolism follows renin, respectively PRA 
decrease. Hence, the most appropriate mathematical mod-
el connecting the PRA with the levels of these two drugs 

is a second order ordinary differential equation. Tolekova 
and Yankov (2006) describe the mathematical model of 
PRA after nicardipine treatment and the model after nife-
dipine treatment in (Tolekova and Yankov, 2008).

Captopril is a widely used antihypertensive drug that 
inhibits ACE, the enzyme that converts angiotensin I to 
angiotensin II. This way it breaks the feedback, which 
influences renin secretion ( Johns et al. 1990). The real 
growth rate of renin is a proportion of the intrinsic growth 
rate. This proportion however decreases with an increase 
in the quantity, leading to a more realistic scenario of a sys-
tem that remains within bounds. The same natural law is 
valid in the process of angiotensin I degradation. There-
fore, the upward and downward trends of PRA graphics 
for the captopril are approximately symmetrical. The dif-
ferent pharmacological mechanism of captopril effects in 
comparison with nicardipine and nifedipine necessitate a 
different mathematical model.

The purpose of this work was to formulate a model of 
PRA dynamics under the influence of different doses of 
captopril. 

Materials and methods

1. Data acquisition
The experiments were carried out on 140 male white 

Wistar rats, divided into 4 experimental groups each of 25 
animals. Each group was administered captopril in doses 
accordingly 10, 30, 60, 80 mg/kg body weight (b.w.) p.o. 
The administration of the drug was performed at 8:00 
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Input signal U(t). A short perorally application of 
captopril is considered as Dirac function. The signal am-
plitude is correlated to the captopril dose.

Output response y(t). During the experiment discrete-
time output Ф(t)

U

y(t) is observed:

Ф(t) = [ф1, ф2,... фN,]Т, where N - number of samples.

The measured data corresponding to Ф(t) are in Tab. 1. 
Vector Ф(t) is used during the identification process. The 
data in Tab. 1 are statistically processed using software Sta-
tistica 6 for Windows (StatSoft Inc). 

Identification time tp. The maximal duration time was 
fixed to 11 hours. 

Sampling time. The first two samples were taken at 30 
min and 1 hr and the subsequent - at every two hrs (Tab. 
1). 

3. Determination of the system model
This stage of identification includes the selection of 

mathematical equations from a set of candidate system de-
scriptions within which a model is to be found. 

A good mathematical model of this scenario is the Ver-
hulst - Pearl equation. It has well served the description of 
growth for such processes as species occupying ecological 
niches, products occupying market niches, and knowledge 
accumulating according to learning curves. The Verhulst 
model  is a differential equation, which relates the change 
in quantity size over time (to what; relate to or substitute 
with describes):

y(t)
K

y(t)
1r

t d
dy(t)





 −=

				  
(1)

- y(t) is the examined quantity at time t;
- r is the growth rate;
- K is the carrying capacity. The parameter K is a mea-

sure of the available resources. If a quantity reaches the size 
K, then all resources are used to keep the quantity level at 
K and no further growth is possible.

The solution y(t) of Eq.1 is a logistic function (or 
logistic growth model):

a.m. After that the main groups were divided further to 
5 subgroups depending of the time of blood collection. 
Each subgroup was made of 5 animals. The blood samples 
were collected intracardially after exsanguination under 
anesthesia with Nembutal in dose 50 mg/kg body weight 
(b.w.) accordingly on the 30 min, 1st, 3rd, 5th, and 7th hours 
after application of captopril. The control group was 
treated with the appropriate volume of saline per os. The 
values of experimental groups were compared with these 
of control group (n=18). A single sample was taken from 
each animal. The blood was centrifugated after which the 
plasma was decanted and preserved at -20°С untill the 
moment of radioimmunological determination of PRA. 
PRA was assessed radioimmunologicaly with assay of Dia-
Sorin-Biomedica Ltd. Each sample determination was du-
plicated. The animals received human care and the study 
was complient with the Institution’s guidelines of Trakia 
University and with the National rules and European 
regulatory rules: Decree for protection and human care  
of experimental animals №25/10.06.2005, Law of veteri-
nary  medical activities G87/11.01.2005, Atr 2(152 and 
153) and Council Directive 86/609/EEC of 24 Novem-
ber 1986 on the approximation of laws, regulations and 
administrative provisions of the Member States regarding 
the protection of animals used for experimental and other 
scientific purposes. 

2. Design of the mathematical model
The model is determined from measured signals using 

identification method and software described in (Yankov, 
2006). The identification follows the algorithm used in 
(Tolekova and Yankov, 2006; Tolekova and Yankov, 2008) 
too.

Fig. 1. Renin – angiotensin regulating system

Fig. 2. PRA after treatement with dose 60mg/kg b.w.

Tab. 1. Plasma renin activity [ng/ml/h] presented as means and 
standard deviation

T
[hours]

Dose [mg/kg] b.w.
10 30 60 80

0 7.58±0.8 7.58±0.8 7.58±0.8 7.58±0.8
0.5 7.9±0.7 8.3±0.8 8.7±0.4 9.1±1.3
1 9.8±1.1 10.7±0.2 12.9±0.4 13.8±1.2
3 20.7±1.6 25.1±2.5 30.3±0.7 32.6±1.7
5 15.1±0.9 17.7±2.2 21.3±1.6 22.3±2.1
7 8.6±0.7 10.1±0.9 11.8±0.5 12.5±1.4
9 7.6±0.9 7.6±0.7 8.2±1.1 8.5±0.8

11 7.6±0.6 7.5±0.7 7.5±0.9 7.8±0.7



Yankov, K. B. and A. N. Tolekova / Not Sci Biol 2 (3) 2010, 07-11

9

) t*r(e
y(0)
K

11

K
y(t)

−








−−

=

			 

( 2 )

where y(0) is initial quantity at time t0 = 0.
In order to model the approximate symmetry of the 

graph, we use two simultaneous processes:
The first process y1(t,d) describes the growth of PRA 

and the restriction К1 depends on the applied captopril 
dose: 
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The solution is:
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The second process y2(t,d) describes the decrease of 
PRA and the restriction К2 is the angiotensin I exhaus-
tion:
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The solution is:
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Thus the model of PRA changes are described as a su-
perposition of the two mentioned processes:

y(t,d) = y1(t,d) + y2(t,d) + Ad(d)

where Ad(d) is the resting level of PRA.
Because there are analytical solutions (Eq.3 and Eq.4), 

it is more convenient to perform the identification using 
these solutions. In this case, the numerical integration of 
equations (3) and (5) is avoided during the identification 
process. That simplifies the calculations and reduces the 
identification time.

Following these considerations, for identification of 
PRA after captopril treatment, the proposed analytical 
model is:
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(7)

where:

The significance of this model is the idea that the carry-
ing capacity can be influenced by captopril availability.

The parameters above must be calculated in order to 
identify the process. All of them are dose (d) dependent 
and they form the identification vector Q(d): 

Q(d)=Q(K1(d), r1(d), K2(d), r2(d), y2(0), Ad(d))
The mathematical model is identified using the Kore-

lia-Dynamix program (Yankov, 2006). Korelia-Dynamix 
identifies algebraic, transcendental and ordinary differen-
tial equations. The proper model is recognized analysing 
input data (Yankov, 2009) or is introduced using spe-
cialized description language (�������������������������   Yankov, �����������������  2008). As identi-
fication method is applied the cyclic coordinate descent 
method (CCD). The residuals between experimental data 
and identified model are minimized applying least square 
or uniform fitting.

Results

The calculated values of the K1(d), r1(d), K2(d), r2(d), 
y2(0) and Ad(d) are presented in Tab. 2.

K1(d) Maximal reached PRA depending on dose d;
y1(0)=7.58 PRA at initial moment; 
r1(d) PRA growth rate;

K2(d)
The quantity of PRA to be subject to 
decrease. In the ideal case K1(d) = K2(d);

y2(0)
Conditional quantity of PRA at initial 
moment for decreasing process;

r2(d) PRA decrease rate;
Ad(d) Resting level of PRA.

Tab. 2. Identification parameters for Eq. 7

parameters
Dose [md/kg] b.w.

10 30 60 80
K1(d) 75.41 93.64 119.36 124.54
r1(d) 0.972 1.026 1.120 1.125
K2(d) 72.88 91.813 115.96 121.818
y2(0) 5.17 5.17 5.17 5.17
r2(d) 0.8092 0.8500 0.9365 0.9400
Ad(d) 4.479 4.700 4.9383 5.064
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The parameters K1(d), K2(d) (Fig. 3), r1(d), r2(d) (Fig. 
4) and Ad(d) (Fig. 5) are nonlinear in relation to the cap-
topril dose d. They must be identified as a function of the 
dose. The dependence of the change of the parameter on 
the applied dose can be modeled with exponential growth 
curve of the type:

Q(d)F(d),Ce1CF(d) const
D
d

∈+−=

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
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
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
 ∆+−

∞

	

(8)

The unknown parameters for identification are:
Applying again the CCD, the calculated values for 

identification parameters are in Tab. 3.

Finally, the time and dose dependent PRA model is de-
scribed by the system of equations:







 +−

−=
0.4546

35.714
d

121.575e130.3930(d)1K







 +−

−=
1.3910

48.780
d

1.099e1.1858(d)1r







 +−

=
0.4722

32.258
d

119.999e -124.7328(d)2K               (6)







 +−

=
1.4540

60.976
d

1.1428e- 1.0246(d)2r







 +−

=
1.2011

84.746
d

0.348e-5.5118 (d)dA

(d)d
d*(d)2r

5.17

(d)2K
11

(d)2K

7.58

(d)1K
11

(d)K
A

ee
d*(d)1r

1) dy(t, +
−

−−

−

−−

=















 −

The graphs of the experimental data interpolated using 
cubic spline and the generated models of PRA for dose of 
10 and 60 mg/kg are shown on Fig. 6, and the correspon-

Tab. 3. Identification parameters for Eq. 8

F(d)
parameters

C∞ D ∆ Cconst
K1(d) 121.575 35.714 0.4546 8.8180
r1(d) 1.099 48.780 1.3910 0.0868
K2(d) 119.999 32.258 0.4722 4.7338
r2(d) 1.1428 60.976 1.4540 -0.1182
Ad(d) 0.348 84.746 1.2011 5.1638

Fig. 3. Carrying capacities K1(d) and K2(d)

Fig. 4. Growth rate r1(d) and decrease rate r2(d)

Fig. 5. Resting level Ad(d)

Fig. 6. Experimental data and simulation model for doses 10 and 
60 mg/kg b.w.

C∞ = F(∞)
D – dose-constant 
∆ - dose correction parameter
Cconst – free term
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dent graphs for dose of 30 and 80 mg/kg are shown on 
Fig. 7.

Discussion

The coefficient К1 is greater than К2 for all applied 
doses of captopril. The significance of this result is that the 
whole quantity of angiotensin I present after the blockage 
is not degraded completely in order to be eliminated from 
the blood stream. This phenomenon was not established 
with the trivial methods of investigation. The explana-
tion of the obscurity of that process can be found in the 
enzymatic nature of renin, which obviously is much more 
active than the nonspecific enzymes, which degrade angio-
tensin I without converting it to angiotensin II. In that case 
there is a positive metabolite balance of the angiotensin I 
(the production rate is greater that the degradation rate) 
which leads to substrate accumulation. When the sub-
strate reaches a certain quantity is could escape the block-
age of angiotensin-converting enzyme. The advantage of 
mathematical modeling is that the results point our atten-
tion to a process which is not well elucidated but which 
is important to the effective medication with angiotensin-
converting enzyme blockers. 

When the change of r1 and r2 is followed, a similar ten-
dency is found. The two coefficients change in a parallel 
manner with the value of  r1 always bigger than the one of 
r2. This tendency speaks that more angiotensin I is synthe-
sized than is degraded which reflects upon steeper upward 
shoulder and gentle downwards shoulder of the graph of 
the change of PRA with time.

Conclusions

In this paper, we derive an analytical model of plasma 
renin activity after captopril treatment. Captopril inhibits 
the feedback in RAS and the upward trend of the renin is 
a proportional of the intrinsic growth rate. For that reason 
the sistem is modeled with a modified logistic model.

With the help of our model we establish that angio-
tensin I is not degraded completely. This fact justifies more 

extensive pharmacological and physiological investigation 
of the processes in the human body connected to the inter-
actions of the non-degraded angiotensin I.
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