

Print ISSN 2067-3205; Electronic 2067-3264 Not Sci Biol 2 (1) 2010, 43-48

Phenology of German Chamomile and its Changes under Different Irrigation Regimes and Plant Densities

Alireza PIRZAD¹⁾, Mohammad Reza SHAKIBA²⁾, Saeed ZEHTAB-SALMASI²⁾, Seyed Abolghasem MOHAMMADI²⁾, Reza DARVISHZADEH¹⁾, Abbas HASSANI³⁾

> ¹⁾ Urmia University, Faculty of Agriculture, Department of Agronomy and Plant Breeding, Urmia, Iran; a.pirzad@urmia.ac.ir, r.darvishzadeh@urmia.ac.ir

²⁾ Tabriz University, Faculty of Agriculture, Department of Agronomy and Plant Breeding, Tabriz, Iran; shakibamr438@yahoo.com, szehtabi@yahoo.com, sa_mohammadi@yahoo.com

³⁾ Urmia University, Institute of Biotechnology, Department of Medicinal and Industrial Plants, Urmia, Iran; horthasani@yahoo.com

Abstract

In order to definite growth stages of *Matricaria chamomilla* L., 40 plants were planted with 200 × 200 cm distance from each other. To determine the phenology under different water stress condition and plant densities, an experiment was conducted in factorial based on randomized complete block design with two factors including irrigation at 4 levels (25, 50, 75, and 100 mm evaporation from pan class A), and plant density at 5 levels (cultivation in 30 cm rows with 5, 10, 15, 20 and 25 cm intra-row spaces) with three replications. Definition of growth stages including the maximum number of nodes, sub stems and tillers were 21, 20 and 14 that were occurred at 970, 1088 and 1088 °C growth degree-days, respectively. The numbers of nodes were 28.6, 30.0, 30.2 and 27.8, of sub stem were 19.2, 18.4, 19.8 and 18.4; and of tillers were 14.8, 14.0, 15.0 and 14.4 that were obtained from irrigation at 25, 50, 75, and 100 mm evaporation from pan, respectively. In the other hand, the number of nodes as follow 28.25, 29.00, 29.75, 29.75 and 29.00; sub stem as 17.50, 20.00, 20.75, 19.00 and 17.50; and tillers were 15.00, 13.50, 14.75, 14.00 and 15.50 that were obtained from 5, 10, 15, 20 and 25 cm intra-row spacing, respectively. Differences by irrigation on GDDs values were observed at the second harvest. However the earliest observation of flower and seed receiving at the first harvest occurred on 5 cm intra-row spacing. These changes were identical by GDDs for second harvest of flower, but with mild slope of reduction. There were no differences in number of leaves and tillers among irrigation levels and plant densities.

Keywords: intra-row spacing, growth degree-days, growth stage, Matricaria chamomilla, water stress

Introduction

Prior to any serious consideration of the chemical composition of chamomile, the botanical and taxonomical identity needs to be understand (Mann and Staba, 1992). Chamomile (Matricaria chamomilla L.), family Asteraceae, there so called German, Hungarian or small chamomilla is a native of Europe and is cultivated extensively in Hungary, Germany, Russia and Yugoslavia. In India M. chamomilla (Persian chamomilla, locally called 'Baboonaj') has been reported to grow in the plains. Matricaria has a wide domestic use, especially among the Germans (Singh, 1982). Chamomile is an annual with an erect or spreading height and usually attains a height of 50 to 65 cm and in some cases about 85 cm. The stem is glabrous, branched; leaves very green and smooth, 2-3 perinatiseet with segments short and very linear, giving the leaf finely dissected appearance. Head solitary, long peduncled, with white ray and yellow disc florets. Receptacle conic, elongated during fruiting (Singh, 1982; Salamon, 1992). The world market currently has German chamomile drug of various origin and therapeutically values. In the 1970s, plant material was evaluated by the content of essential oil and the content of chamazulene (Salamon, 1998).

The changes in the soil moisture regime can alter the root morphology and anatomy, the pore size distribution, and the angle of roots penetration, which affect root proliferation. The major types of stresses which potentially affect plant growth on a global basis are water (flooding and drought) stress (Pessarakli, 1999). In waterlogged soils, slowing down of shoot and root growth was more closely related to the declining O_2 concentration in the soil solution than to the concentration of dissolved inorganic nitrogen (Trought and Drew, 1980). Flooding is the saturation of the soil root zone with water. Flooding (water logging) occurs when inundation persists as a result of inadequate surface and/or subsurface drainage and the aeration status of the soil system decreases below critical limits. Water stress (drought) is also an important limitation to crop production. Reduction in photosynthetic activity and increases in leaf senescence are symptomatic of water stress and adversely affect crop growth. Water stress also reduces the net CO₂ assimilation (Pessarakli, 1999).

Plant density is invariably linked with yield, the more plant stands there are up to a certain limit, the higher the expected yield (Bertoia et al., 1998). The dominant production practice is for farmers to plant crops (cereals) at spacing in the range of 30-35 cm, which on average gives about 44.000 to 38.000 plants per hectare. In addition, in most irrigation schemes, water is not a limiting factor, what tends to happen is rather over-irrigation because of the abundance of water. Research has also shown that farmers apply on average twice the moisture consumptive use requirements of crops on each irrigation level. This is deleterious to crops and retards proper growth and subsequent yield. Farmers thus face the problem of knowing the correct plant density to sow and also the exact amount (or optimum amount) of water to apply, which amount to apply in areas of abundance and areas of scarcity (Sani et al., 2008).

Materials and methods

This research was conducted between May and August for two seasons (2003 and 2004) at the field of Dept. Agronomy and Plant Breeding of Faculty of Agriculture of Urmia University (latitude 37.53°N, 45.08°E, 1320 m above sea level) Urmia, Iran. Mean of air temperature (15.6, 16.6, 23.4, 23.4°C), evaporation (191.1, 200.2, 272.0, 296.9 mm), rainfall (9, 5.9, 0, 0 mm) and relative humidity (55.7, 52.2, 51.7, 51.3%) for May, June, July and August 2003, respectively. However, mean of air temperature (14.8, 19.9, 22.1, 23.2°C), evaporation (165.1, 230.1, 227.3, 271.8 mm), rainfall (60, 3.3, 16.3, 0 mm) and relative humidity (62.7, 52.1, 56.8, 49.9%) for May, June, July and August 2004, respectively. The soil texture of experiment site was clay-loam (28% silt, 33% clay, 40% sand) with 22.5% field capacity, 1.54 g cm^{-3} soil density, 1.98%organic mater, pH=7.6.

This communication, based on a 2-year (2003 and 2004) field study, describes the drought susceptibility of 5 plant density of German chamomile, expressed in terms of plant phenology. The seeds of *Matricaria chamomilla* L. c.v. 'Bodegold', a tetraploide variety were planted on 1 May both two year. Experiments carried out in factorial based on Randomized Complete Block Design with two factors, Irrigation and plant density. Irrigation regimes (I_1 , I_2 , I_3 and I_4) irrigation at 25, 50, 75 and 100 mm evaporation from class A pan, respectively) and plant density (D_1 , D_2 , D_3 , D_4 and D_5 cultivation in 30 cm rows with 5, 10, 15, 20 and 25 cm intra-row spaces, respectively) treatments have done at rosette stage. Plant growth was continuously monitored during the whole experimental period by mechanical control of weeds. However, to determine a complete phenol-

ogy of German chamomile, 40 plants were planted with 200 cm distance from each other in 2003 and 2004.

Statistical evaluation was performed using MSTATC software (Michigan State University, 1988). The effects of Irrigation regimes (I) and Plant density (D) as well as the interactions of these two factors were analyzed with the analysis of variance. The results of statistical analysis are expressed by F-values; asterisks indicate p-values: p*<0.05 and p**<0.01. The comparison of means carried out with SNK (Student-Neuman Keul's test).

Results and discussion

Definition of growth stages of *Matricaria chamomilla* L. at the experiment site in 2003 and 2004, showed in Tab. 2. In this study, the maximum number of nodes (V_n) , sub stems (S_n) and tillers (T_n) were 21, 20 and 14 at the GDDs of 970, 1088 and 1088°C, respectively (Tab. 1).

Means of vegetative and generative growth stages of German chamomile under irrigation regimes and plant distances on constant rows (plant density) showed on Tab. 2 and 3. Vegetative stages: V_1 , V_2 , V_1 , V_2 and V_3 were same in all treatments, after that and carrying out of irrigation and plant density treatments differences were showed. The numbers of node were 28.6, 30.0, 30.2 and 27.8 at the irrigation at 25, 50, 75 and 100 mm evaporation from class A pan, respectively. It seems excess water on I₁ and water deficit on I lead to reduce number of nodes. Means of the number of sub stem were 19.2, 18.4, 19.8 and 18.4; and the number of tillers were 14.8, 14.0, 15.0 and 14.4 obtained from I₁, I₂, I₃ and I₄, respectively. R₁ stage was 73 days after planting at I_1 and I_2 , but 66 days after planting at I₃ and I₄. However, R₂ stage was 87 days after planting in I1 and I2 and 80 days after planting in I3 and I4. R3 were occurred 87 days after planting in all irrigation regimes, but R_3 b were 113 days after planting for I_3 and I_4 and 111 days after planting for I₁ and I₂. R_{4a} were occurred 105 days after planting in all irrigation regimes, but R_{4b} were 122 days after planting for I_1 , I_2 and I_3 that were 7 days later than I_4 . These results, any differences at the first harvest and differences at the second harvest, are due to ending a growth stage at the second stage while at the first one we cut the growth and harvest its flowers and seeds. Rs, flowering of sub stems occurred 80 days after planting at the I_{A} , while it occurred 87 days after planting at the I₁, I₂ and I₃ (Tab. 2). It seems the strength stresses led to early observation on generative stages.

The number of nodes 28.25, 29.00, 29.75, 29.75 and 29.00; sub stem 17.50, 20.00, 20.75, 19.00 and 17.50; and tillers were 15.00, 13.50, 14.75, 14.00 and 15.50 obtained from D_1 , D_2 , D_3 , D_4 and D_5 , respectively. Initial of generative stage, R_1 was occurred 66 days after planting at the D_1 and D_5 that were 7 days earlier than D_2 , D_3 and D_4 . However occurrence of R_2 was 73 days after planting at the D_1 and D_5 like R_1 in comparison with D_2 , D_3 and D_4 . R_{3a} were occurred 84, 86, 87, 88 and 89 days after planting and R_{4a} .

Count	Symbol		GDDs
Growth Stage		Definition	(mean
Jtage			2 year)
	V _e	Emerging (Cotyledons are top of the Soil)	195
	V _c	Appearance of Cotyledons leaves (simple leaf fully opened)	219
	V_1	Appearance of First node on stem (2 leaves)	274
	V_2	Appearance of Second node on stem (2 leaves)	364
	V ₃	Appearance of third node on stem (5 th leaf)	407
	V_4	Appearance of 4^{th} node on stem (6^{th} leaf)	437
	V ₅	Appearance of 5^{th} node on stem (7^{th} leaf)	484
	V_6	Appearance of 6^{th} node on stem (8^{th}leaf)	531
	V ₇	Appearance of 7^{th} node on stem (9^{th} leaf)	580
	V_8	Appearance of 8^{th} node on stem (10^{th}leaf)	600
	V_9	Appearance of 9^{th} node on stem (11^{th} leaf)	620
	V ₁₀	Appearance of $10^{\rm th}$ node on stem $(12^{\rm th}\text{leaf})$	641
	V ₁₁	Appearance of 11^{th} node on stem $(13^{\text{th}} \text{ leaf})$	662
	V ₁₂	Appearance of 12^{th} node on stem (14^{th} leaf)	681
	V	Appearance of N^{th} node on stem (N-2^{th} leaf)	Ν
	S ₁	Appearance of First Sub stem	650
	S ₂	Appearance of Second Sub stem	680
	S ₃	Appearance of Third Sub stem	710
	S ₄	Appearance of Forth Sub stem	748
Veg	S ₅	Appearance of 5 th Sub stem	788
Vegetative	S ₆	Appearance of 6 th Sub stem	910
ıtiv	S ₇	Appearance of 7 th Sub stem	970
Ċ,	S ₈	Appearance of 8 th Sub stem	990
	S ₉	Appearance of 9 th Sub stem	1000
	S ₁₀	Appearance of 10 th Sub stem	1015
	S ₁₁	Appearance of 11 th Sub stem	1023
	S ₁₂	Appearance of 12 th Sub stem	1032
	S _n	Appearance of N th Sub stem	Ν
	T,	Appearance of First Tiller	680
	Τ,	Appearance of Second Tiller	690
	Τ,	Appearance of Third Tiller	707
	Т ₄	Appearance of Forth Tiller	725
	T ₅	Appearance of 5 th Tiller	743
	T ₆	Appearance of 6 th Tiller	760
	T ₇	Appearance of 7 th Tiller	788
	T ₈	Appearance of 8 th Tiller	838
	T ₂	Appearance of 9 th Tiller	938
	T ₁₀	Appearance of 10 th Tiller	970
	T ₁₁	Appearance of 11 th Tiller	1010
	T ₁₂	Appearance of 12 th Tiller	1088
	T _n	Appearance of N th Tiller	Ν
	TT	Appearance of Sub Tiller	1043
	SS	Appearance of Sub Stem from Sn	1184
		**	

Tab. 1. Definition of growth stages of *Matricaria chamomilla* L. at the experiment site in 2003 and 2004

Tab. 1. Definition of Growth stages of *Matricaria chamomilla* L. at the experiment site in 2003 and 2004 (Continue)

Growth Stage	Symbol	Definition	GDDs (mean 2 year)
	R ₁	Flowering initialize	970
	R ₂	Flowers are fully opened, ligulae petals horizontal, Smooth Receptacle, yellowish florets with pollen grain on it	1029
	R _s	Flowering initialize on Sub stem	1026
Generative	R ₃	Receptacle is conic and swollen (cone-shape capitulum, hollow bottom), ligulae petals are swept and their color changed and grain is formed but soft, flowers in optimal condition for essential bearing. In harvested condition there are 2 harvests as: R_{3a} first harvest and R_{3b} the second harvest.	1120- 1680
	R ₄	Ligulae petals are vertical and up down, florets completely ripened except of mid florets, grains darken and hard. In harvested condition there are 2 harvests as: R_{st} first harvest and R_{st} the second harvest.	1338- 1705
	D	Plant drying initialize, defoliate 2-3 downiest leaves, a few numbers of small flowers appears at the end of stem and substem.	1305

chamomile during growth season of experiment site was shown on Fig. 1. Results of ANOVA showed that GDDs for first harvests of flower and seed were not affected by irrigation regimes, but plant density had significant effect on them (P < 0.01). Significant interaction between year and plant density showed different procedure of GDDs for first harvest of flower and seed (Tab. 4). Despite of these significances, GDDs for first harvest of flower and seed have same trends, increasing with reducing plant density in both 2 years (Fig. 2). We found the maximum amounts of GDDs at the first harvest of flower (1075) and seed (1409) belonged to D5 in which declined with reducing intra-row distances and received the minimum amounts for flower (1011) and seed (1300) harvest in D1 (Fig. 3). At the second harvest, GDDs for harvest of flower affected by irrigation regime and plant density (P<0.01), But the effect of plant density was non-significant for seed harvest (Tab. 4). Maximum amounts of GDDs at the second harvest of flower belonged to I₁ and I₂ and the minimum amount obtained from I₃ and I₄. These values obtained at I_3 and I_4 for maximum and minimum, respectively. Comparisons of means showed the same procedures on GDDs like one of the first harvest of flowers affected by different plant density (Fig. 2). Overall differences by irrigation on GDDs values observed at the second harvest. Water stress at the strength level led to earlier occurrence of receiving both flower and seed. However the earliest observation of flower and seed receiving at the first harvest occurred on the highest density of plant. It seems that increasing the distances between plants provide a condition to branching and great vegetative growth. These changes were the same with GDDs for second harvest of flower, but with mild

45

were occurred 102, 103, 104, 105 and 108 days after planting in D_1 , D_2 , D_3 , D_4 and D_5 , respectively. But R_{3b} were 113 days for D_1 and D_2 , 114 days for D_3 and D_{42} and 115 days for D_5 , while R_{4b} for D_1 , D_2 and D_3 were 119 days and for D_4 and D_5 were 120 days after planting. Rs Stage was 87 days for D_1 , D_3 , D_4 and D_5 , and 94 days after planting for D_2 (Tab. 3). Accumulative Growth Degree Days for German

46	
Tab. 2. Growth stages of Matricaria c	hamomilla L. under irrigation regimes

Days	GD	Ds	Irrigation r	egimes (irrigation after evaporation from class A pan)			
after Planting	2003	2004	I ₁ (25 mm)	I ₂ (50 mm)	I ₃ (75 mm)	I ₄ (100 mm)	
0	0	0	Planting	Planting	Planting	Planting	
26	227	205	V	Ve	Ve	Ve	
28	247	229	V _c	V _c	V _c	V _c	
33	290	280	V ₁	V ₁	V ₁	V ₁	
42	354	388	V ₂	V ₂	V ₂	V ₂	
45	383	423	V ₃	V ₃	V ₃	V ₃	
52	454	522	V _{5.4}	V ₇	V _{7.4}	V _{9.4}	
59	552	636	V _{7.2}	V _{10.2}	V _{10.2}	V _{14.2}	
66	664	729	V _{8.8} S _{3.4} T _{4.6}	V ₁₂ S _{2.6} T _{5.4}	$R_1 V_{12.6} S_{5.2} T_{6.4}$	$R_1V_{18} S_6 T_{5.8}$	
73	788	827	$R_1V_{16.2}S_{5.6}T_{8.4}$	$R_1 V_{17,2} S_{5,2} T_{7,6}$	$R_2 V_{18.6} S_{8.6} T_{10}$	$R_2 V_{22.2} S_{9.6} T_{9.8}$	
80	915	945	$R_2 V_{21.8} S_{8.8} T_{11.2}$	$R_2 V_{20.6} S_9 T_{9.2}$	V _{22.4} S ₁₃ T _{12.6}	$RsV_{24.8} S_{14.4} T_{12}$	
84	981	1010					
86	1012	1040					
87	1029	1055	$R_{3a} RsV_{25.4} S_{13.8}T_{13.6}$	$R_{3a} RsV_{26.2} S_{13.2} T_{12}$	$R_{3a} RsV_{27} S_{16.2} T_{14}$	$R_{3a}V_{26.6} S_{16.2}T_{13.6}$	
88	1043	1073					
89	1060	1090					
94	1138	1179	V _{28.6} S _{19.2} T _{14.8}	$V_{30} S_{18.4} T_{14}$	V _{30.2} S _{19.8} T ₁₅	$V_{27.8} S_{18.4} T_{14.4}$	
101	1262	1298					
102	1282	1316					
103	1304	1332					
104	1324	1348					
105	1340	1362	R_{4a}	R_{4a}	R _{4a}	R _{4a}	
108	1387	1412					
113	1468	1502			R _{3b}	R _{3b}	
114	1484	1516					
115	1500	1530	R _{3b}	R _{3b}		R _{4b}	
119	1562	1594					
12	1578	1610					
122	1612	1643	R_{4b}	R_{4b}	R _{4b}		

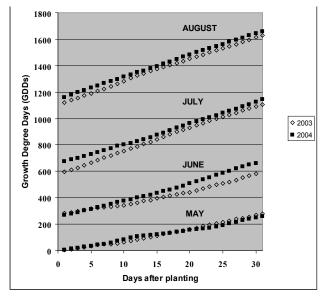


Fig. 1. Growth Degree Days (GDDs) of Matricaria chamomilla L. at the experiment site

slope of reduction. At last, this slope got zero for second harvest of seed because of ending growth season on this stage.

Results showed no differences of the number of leaves and tillers among irrigation levels with means 27.377 and 12.683, respectively. But, plant density had significant (P<0.05) and non-significant effect on the numbers of leaves and tillers. Despite of this significance all levels of plant densities had same numbers of leaves and tillers under among plant densities. However, there were significant interaction between irrigation and plant density on the numbers of sub stem (Tab. 4). Results indicated that levels of each factor in other factor had a same trend of the numbers of sub stem (Tab. 5).

Acknowledgments

I dedicate this paper to the late Prof. Houshang Alyari.

Days	GI	DDs	Intra row spacing by 30 cm inter row spacing (cm)					
after Planting	2003	2004	$D_1(5 \text{ cm})$	$D_2(10 \text{ cm})$	D ₃ (15 cm)	D ₄ (20 cm)	$D_{5}(25 \text{ cm})$	
0	0	0	Planting	Planting	Planting	Planting	Planting	
26	227	205	V _e	V _e	V_{e}	V _e	V _e	
28	247	229	V _c	V_{c}	V _c	V _c	V _c	
33	290	280	V_1	V_1	V_1	V_1	V_1	
42	354	388	V_2	V_2	V_2	V_2	V_2	
45	383	423	V ₃	V ₃	V_3	V_3	V ₃	
52	454	522	V_8	V _{7.5}	V _{6.25}	V _{7.75}	V_7	
59	552	636	V _{11.5}	V _{10.25}	V_{9}	V _{11.25}	V _{10.25}	
66	664	729	$R_1 V_{13.75} S_{4.25} T_5$	$V_{12.75} S_{2.75} T_{4.25}$	$V_{11.25} S_{4.25} T_{6.25}$	$V_{13.75} S_{3.75} T_{5.75}$	$R_1 V_{12.75} S_{6.5} T_{6.5}$	
73	788	827	$R_2 V_{18} S_{6.5} T_{8.5}$	$R_1 V_{18} S_6 T_{8.25}$	$R_{1}V_{19}S_{6.5}T_{9}$	$R_1 V_{19} S_{7.75} T_{9.5}$	$R_2 V_{18.75} S_{9.5} T_{9.5}$	
80	915	945	$V_{20.75} S_{9.25} T_{11}$	$R_2 V_{21.5} S_{11} T_{11.25}$	$R_2 V_{24.5} S_{9.5} T_{10.75}$	$R_2 V_{23.25} S_{13.25} T_{11.5}$	$V_{22} S_{13.5} T_{11.75}$	
84	981	1010	R _{3a}					
86	1012	1040		R _{3a}				
87	1029	1055	V _{25.25} S _{13.25} T _{13.5}	V _{25.75} S ₁₅ T _{12.75}	$R_{3a} R_{s}V_{27.5} S_{14.75}T_{13.25}$	$R_{s}V_{26.75}S_{16}T_{13}$	$R_{s}V_{26.25}S_{15.25}T_{14}$	
88	1043	1073				R _{3a}		
89	1060	1090					R _{3a}	
94	1138	1179	V _{28.25} S _{17.5} T ₁₅	$R_{s}V_{29}S_{20}T_{13.5}$	V _{29.75} S _{20.75} T _{14.75}	$V_{29.75} S_{19} T_{14}$	V ₂₉ S _{17.5} T _{15.5}	
101	1262	1298						
102	1282	1316	R_{4a}					
103	1304	1332		R _{4a}				
104	1324	1348			R_{4a}			
105	1340	1362				R _{4a}		
108	1387	1412					R _{4a}	
113	1468	1502	R _{3b}	R _{3b}				
114	1484	1516			R _{3b}	R _{3b}		
115	1500	1530					R _{3b}	
119	1562	1594	R_{4b}	R _{4b}	R_{4b}			
12	1578	1610				R_{4b}	R _{4b}	
122	1612	1643						

Tab. 3. Growth stages of Matricaria chamomilla L. under plant densities

Tab. 4. Combined Analysis of variance of GDDs for flower and seed at two harvest of German chamomile affected by different irrigation regimes and plant densities

	d.f.	GDDs				Maximum numbers		
Source of Variation		Flower		seed		Lachara	Sub stem	T:11
		First harvest	Second harvest	First harvest	Second harvest	Leaf per plant	per plant	Tiller per plant
Year	1	24168.41"	42112.53 ^{ns}	42.865.20"	75300.30 ^{ns}	1930.25 "	10.716 **	8.431**
E1 (r/Y)	4	0.01	362399.43	73.20	16677.24	1.31	0.058	0.116
Irrigation (A)	3	0.01 ^{ns}	15195.34"	0.0001 ^{ns}	26650.68"	14.70 ^{ns}	0.138 ^{ns}	0.059 ^{ns}
A×Y	3	0.01 ^{ns}	46.07 ^{ns}	0.0001 ^{ns}	879.17 ^{ns}	0.21 ns	0.0003 ^{ns}	0.001 ns
Plant Density (B)	4	15262.21"	2122.00"	41386.20**	635.55 ^{ns}	23.34*	0.373*	0.563 ns
B×Y	4	7.91**	6.53 ^{ns}	202.20**	25.57 ^{ns}	0.64 ^{ns}	0.002 ^{ns}	0.006 ^{ns}
A×B	12	0.01 ^{ns}	2.84 ^{ns}	0.0003 ^{ns}	168.56 ^{ns}	11.11 ^{ns}	0.375**	0.368 ns
A×B×Y	12	0.01 ^{ns}	2.84 ^{ns}	0.0003 ^{ns}	8.08 ^{ns}	0.24 ^{ns}	0.002 ^{ns}	0.004 ^{ns}
Error	76	0.01	516.11	15.41	769.01	8.85	0.141	0.272
Coefficient of Variance		0.01	1.52	0.29	1.74	10.87	9.36	14.83

Note: ns, * , ** non-significant, significant at P<0.05 and P<0.01, respectively; df, degree of freedom

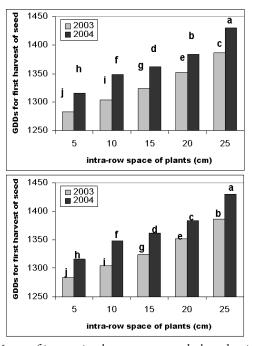


Fig. 2. Means of interaction between year and plant density on GDDs of first harvest of flower and seed. The same letters show non-significant differences

Tab. 5. Means of interaction between irrigation regimes and plant density on the maximum numbers of sub stem per plant

Intra-row	Irrigation regimes (mm evaporation							
space of	from class A pan)							
plants	25 50 75 10							
(cm)	Maximum numbers of sub stem per plant							
5	13.833ab	16.000ab	16.000ab	18.333ab				
10	16.333ab	16.000ab	16.667ab	15.000ab				
15	19.167a	16.000ab	18.833ab	16.833ab				
20	14.167ab	18.167ab	19.500a	14.833ab				
25	17.667ab	12.500b	14.500ab	15.667ab				

Note: The same letters show non-significant differences

References

- Bertoia, L., R. Burak and A. Nivio (1998). Effect of plant densities on yield and quality of forage maize. Maize Growers Co-operative Newsletter. Santa Catarina, Brazil.
- Mann, C. and E. J. Staba (1992). The chemistry, pharmacology and commercial formulations of chamomile, p. 235-280. In: L. E. Craker and J. E. Simon (Eds.), Herbs, Spices and Medicinal plants, Recent Advances in Botany, Horticulture and Pharmacology, Vol. I. Food Product Press, New York.
- Michigan State University (1988). User's Guide to MSTAT-C a software program for the design, management, and analysis of agronomic research experiment, MSU, USA.
- Pessarakli, M. (1999). Handbook of plant and crop stress. Marcel and Dekker Inc, New York, pp.1198.
- Salamon, I. (1992). Chamomile a medicinal plant. The Herb, Spice and Medicinal Plant Digest. 10(1):1-4.

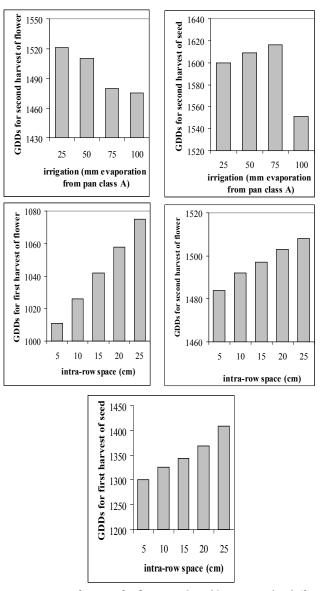


Fig. 3. Means of GDDs for flower and seed harvest under different irrigation regimes and plant densities. The same letters show non-significant differences

- Salamon, I. (1998). Genetic resourses of selected medicinal plants in the east Slovak lowland-their evaluation and use. Medicinal Plants Report. 5(5):24-29.
- Sani, B. M., K. O. Oluwasemire and H. I. Mohammed (2008). Effect of irrigation and plant density on the growth, yield and water use efficiency of early maize in the Nigerian savanna. ARPN Journal of Agricultural and Biological Science. 3(2): 33-40.
- Singh, A. (1982). Cultivation of *Matricaria chamomilla*. p. 653-657. In: A. Singh, C. K. Atal and B. M. Kapur (Eds.). Cultivation and utilization of aromatic plants. R.R.L. Jammu-Tawi.
- Trought, M. C. T. and M. C. Drew (1980). The development of waterlogging damage in wheat seedling (*Triticum aestivum* L.). II. Accumulation and redistribution of nutrients by the shoot. Plant and Soil. 56:187-199.