Elemental Composition of Two Rice Cultivars under Potentially Toxic on Aquept and Aquent

Adesola Olutayo OLALEYE¹, Ayoade Olayiwola OGUNKUNLE¹, Baij Nath SINGH², Festus Olugbenga ODELEYE³, Oeyeomi Adigun DADA⁴, Bolarinwa Ayoola SENJOBI⁵

¹ Olabisi Onabanjo University Ago-Iwoye, Department of Soil Science and Farm Mechanisation, Nigeria; talk2yemyem@yahoo.com
² Birsa Agricultural University, Director of Agriculture, India
³ University of Ibadan, Crop Protection and Environmental Biology, Ibadan, Nigeria
⁴ Olabisi Onabanjo University Ago-Iwoye, Crop Production Department Nigeria
⁵ University of Maiduguri, Department of Crop Production, Nigeria

Abstract
Iron toxicity is a major nutrient disorder affecting rice production of wetland rice in the irrigated and rain fed ecosystem in West Africa sub-region. Little attention has been paid to evaluating nutrient contents of rice cultivars grown on such soils and their relationship to the iron toxicity scores, grain yield and dry matter yields. A pot experiment was conducted on two potentially Fe-toxic soils (Aeric Fluvaquent and Aeric Tropaquept). The experiment was a 2 x 2 x 4 factorial experiment, with three replicates arranged in a randomized model. The factors were two soil types, two rice cultivars (‘ITA 212’) and tolerant (‘Suakoko 8’) and four Fe²⁺ levels (control, 1000, 3000 and 4000 mg L⁻¹). The results showed that for both susceptible cultivar (‘ITA 212’) and the relatively tolerant (‘Suakoko 8’) cultivar, little or no differences were observed in their elemental composition regarding micro and macro-nutrients. For the susceptible cultivar, results showed that none of the tissue nutrients significantly relates to iron toxicity scores (ITS), grain yield and dry matter yield on both soil types. However, for the tolerant cultivar, ITS was observed to be significantly related to tissue K and P contents, on the two soil types respectively. Tissue Ca and Mg were observed to be significantly related to the dry matter yield (DMY) on Aeric Tropaquept. It could be concluded that for these rice cultivars grown on two potentially Fe-toxic soils, different tissue nutrients may trigger the manifestation of bronzing or yellowing symptoms of rice cultivars.

Keywords: Rice, wetlands, iron toxicity, soil, yield, tissue nutrients

Introduction
Iron toxicity (Fe) may be attributed to high iron content in the soil, low soil pH and soil fertility as well as by accumulation by of harmful organic acids and (or) hydrogen sulphide (Tanaka et al., 1966; Tanaka and Yoshida, 1970; Becker and Asch 2005). Plants generally show bronzing or yellowing symptoms if dissolved iron in the soil solution of the rhizosphere is in the 300 to 500mg/kg range. Excessive tissue Fe content (> 300 mg Fe/kg) is known to be toxic to rice crops. It has been reported that rice plants grown on such soils show little or no differences in their elemental composition with regards to macro and micro-nutrients (Sahrawat et al., 1996; Olaleye et al., 2000; Sahrawat 2000, Olaleye et al., 2008; Olaleye and Ogunkunle, 2008). Little attention has been given to determining which of the macro and micronutrients significantly relates to the iron toxicity scores, grain and dry matter yields.

If iron toxicity expressed as bronzing or yellowing is indeed triggered by excessive Fe²⁺ uptake and insufficient supply of several nutrients, then it is expected that several tissue nutrients would be significantly related to the iron toxicity scores (ITS), grain yield (GY) and dry matter yield (DMY) of these two rice cultivars on two iron toxic soil types (Aeric Tropaquept and Aeric Fluvaquent). This hypothesis was tested by the study below.

Materials and methods

Soils
The Soil samples (0-15 cm depth) used for this investigation were randomly collected at C-Hydromorphic plot of the International Institute of Tropical Agriculture (IITA), Ibadan, Oyo State and Edozhigi, Niger State (representing humid forest and derived savannah agro-ecological zones respectively). The soil at Ibadan was classified as an Aeric Fluvaquent, whereas that in Niger State was classified as an
(Humid forest), 560-mg N/pot, 200-mg P\textsubscript{2}O\textsubscript{5}/pot and 26-mg Zn /pot were applied. Standing water of about 2-3-cm depth was maintained throughout the crop growth. The water used for irrigation was de-ionized water of good quality having pH ranging between 6.8 and 7.1. Seedlings of about 23 day-old of uniform vigor were transplanted at the rate of four seedlings/pot into the reduced soils where Fe treatments were introduced a week after transplanting.

Plant samplings

Plant samples with different degrees of bronzing symptoms were scored redundant visually using a scale of 1-9 based on the International Rice Research Institute (IRRI) standard evaluation systems for rice (IRRI 1988). A score of 1 suggests normal growth and tillering, while a score of 9 indicated that almost all plants are dead/dying. Plant samplings were carried out per pot/treatment at 30, 60 and 90 days after transplanting (DAT). They were washed with 0.1% teepol solution to avoid contamination especially of Fe and were then rinsed with de-ionized water. The washed plant samples were oven-dried at a temperature of 65 °C for 12 hours, cut and ground using mortal and pestle for easy digestion by a concentrated double acid (2:1 nitric and perchloric acids) mixture. Detailed methodology is described elsewhere (Olaleye et al., 2000).

Aeric Tropaquept (Olaleye, 1998). Soil samples were composited, air-dried and representative samples were taken for laboratory analysis after being crushed to pass a 2-mm sieve and some to further pass a 0.5-mm sieve. Detailed soil analytical procedures were followed as described by Olaleye et al. (2000). Selected chemical properties of the soils are presented in Fig 1.

table

<table>
<thead>
<tr>
<th>Regression</th>
<th>DF‡</th>
<th>Sum of Squares</th>
<th>Mean squares</th>
<th>F</th>
<th>Prop>F†</th>
</tr>
</thead>
<tbody>
<tr>
<td>Error</td>
<td>1</td>
<td>2.634</td>
<td>2.634</td>
<td>7.28</td>
<td>0.022</td>
</tr>
<tr>
<td>Total</td>
<td>11</td>
<td>6.250</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Variables

<table>
<thead>
<tr>
<th>Parameter estimate</th>
<th>Standard error</th>
<th>Type II sum of squares</th>
<th>F</th>
<th>Prop>F†</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>-1.127</td>
<td>0.417</td>
<td>2.634</td>
<td>7.28</td>
</tr>
</tbody>
</table>

Iron studies

Four iron (Fe) levels (control, 1000, 3000 and 4000-mg Fe L-1) were prepared from FeSO\textsubscript{4}, to be used with two rice cultivars (‘ITA 212’ and ‘Suakoko 8’). The former variety was susceptible whereas the latter was relatively tolerant to Fe2+ toxicity.

Pot experiment

The experiment was a 2 x 2 x 4 factorial experiment with three replicates in arranged in a randomized fashion. The factors were two soil types, two rice cultivars and four Fe2+ levels (control, 1000, 3000 and 4000 mg L-1). Soils (4 kg) were placed in 5-liter plastic pots and were thoroughly mixed with a basal fertilizer application. In the Aeric Fluvaquent (Derived Savannah), the fertilizers were applied at the rates of 560-mg N/pot, 48-mg P\textsubscript{2}O\textsubscript{5}/pot, 100-mg K\textsubscript{2}O/pot and 26-mg Zn /pot whereas in the Aeric Tropaquept (Humid forest), 560-mg N/pot, 200-mg P\textsubscript{2}O\textsubscript{5}/pot and 26-mg Zn /pot were applied. Standing water of about 2-3-cm depth was maintained throughout the crop growth. The water used for irrigation was de-ionized water of good quality having pH ranging between 6.8 and 7.1. Seedlings of about 23 day-old of uniform vigor were transplanted at the rate of four seedlings/pot into the reduced soils where Fe treatments were introduced a week after transplanting.
The mean iron toxicity scores (ITS), grain yield (GY) and dry matter yield (DMY) are presented in Fig. 3. The tolerant cultivar (‘Suakoko 8’) out-yielded the susceptible check on both soil types in terms of GY (g/pot). Furthermore, results showed that the DMY was much affected by the Fe²⁺ levels on both soil types. This was in agreement with the findings of Fageria and Rabelo, (1987) and Olaleye and Ogunkunle, (2008). In addition, the mean ITS ranged between 2.25 and 2.50, though low, the mean tissue Fe contents ranged between 270 and 322 mg Fe kg⁻¹ dry weight.

The result of step-wise multiple regression analysis is presented in Tab 1. For the susceptible check (‘ITA 212’) grown on both soil types, none of the tissue nutrients significantly relates to ITS, GY and DMY at P=0.05%. However, on Aeric Fluvaquent, the ITS of a tolerant check (‘Suakoko 8’) was observed to be significantly related to tissue K content (P=0.02%). The regression equation is given as: ITS = 3.109 - 1.13 (K), R² = 0.421. Similarly, on both soil types, results showed that none of the tissue nutrients significantly relates to GY and DMY on Aeric Fluvaquent. However, on Aeric Tropaquept, the ITS of a tolerant cultivar (Suakoko 8) appeared to be significantly related to the tissue P content, but the R²=0.276 appeared to be low. In addition, on the same soil type, of the entire yield attributes (GY and DMY), only the DMY appeared to be significant related to tissue Ca and Mg with R² = 0.559.

The results of the regression analysis still points to the fact that deficiencies of P and K in both soil solution and tissues, may trigger bronzing symptoms of rice cultivars grown such soils. This was in agreement with the result of earlier authors that deficiencies of P, K, Zn Ca, and Mg in relation to N would result in excessive Fe²⁺ uptake (Benckiser et al. 1984a; Benckiser et al. 1984b and Olaleye et al. 2000; Olaleye et al., 2009). The importance of P, K and Ca has been demonstrated to improve the oxidizing capacity of rice roots and thus increase its iron excluding capacity rice roots (Wyn Jones and Lunt, 1967).

Conclusions

The results of this study clearly show that soil type significantly influence tissue nutrient contents of rice cultivars grown on it. The bronzing symptoms of some rice cultivars on two soil types is a function of different tissue nutrient contents, in this case, K and P contents for the tolerant cultivar (‘Suakoko 8’).

Acknowledgments

This work was conducted with the financial support of African Development Bank (ADB) and West Africa Rice Development Association (WARDA) through a research fellowship to A. O. Olaleye. We also thank member of staff of the Analytical Service Laboratory (ASL), IITA, Ibadan,
Nigeria for permission to use their laboratory for soil and plant analyses.

References

