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AbstractAbstractAbstractAbstract    
    
The MYB transcription factor family is widespread in plants and plays an important role in plant growth 

and development as well as in plant responses to stress. The MYB transcription factor family has been identified 
in a variety of organisms; however, it has not been identified and analysed in the desert plant Haloxylon 

ammodendron. In this study, R2R3-MYB genes were identified and analysed using a bioinformatic approach. 

A total of 78 R2R3-MYB genes were identified and named according to their position on the chromosome. 
The R2R3-MYB genes were unevenly distributed on nine chromosomes. Phylogenetic analysis showed that 
the HaMYB genes were all divided into 31 subfamilies. Covariance analysis revealed the presence of three pairs 
of fragmentary duplicated genes in H. ammodendron (HaMYB54 and HaMYB17, HaMYB44 and HaMYB36, 

HaMYB42 and HaMYB27). Gene structure and conserved structural domain analysis revealed different 

subgroups with different orders of magnitude of variation in gene structures and conserved structural domains. 
Analysis of cis-elements showed that the cis-acting elements of HaMYBs were mainly associated with hormone 

and abiotic stress responses. Real-time quantitative PCR was used to detect the expression levels of HaR2R3-
MYB genes, and six HaR2R3-MYB genes were found to respond to salt stress and six HaR2R3-MYB genes to 
drought stress, with HaMYB22 and HaMYB27 showing upregulated expression under both stresses. 

Transcriptome analysis showed that HaMYB63 was significantly differentially expressed in the assimilated 

branches of H. ammodendron, and the subcellular localization of this protein showed that it was located in the 

nucleus and had transcriptional self-activating activity. These results provide a theoretical basis for further 
studies on the functions of the R2R3-MYB gene family and the molecular mechanisms of resistance in H. 

ammodendron. 
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IntroductionIntroductionIntroductionIntroduction    
 
Haloxylon ammodendron is a shrub or small tree of the genus Haloxylon and a typical C4 plant whose 

leaves have degenerated into assimilated branches, which exercise photosynthesis instead (He et al., 2018; Lü 

et al., 2019). This species is distributed mainly in the deserts of Central Asia and Xinjiang, China (Li et al., 

2019), with many characteristics, such as drought, high temperature, salinity, wind erosion and cold resistance 
(Zhang et al., 2016; Gao et al., 2020; Lü et al., 2022). It plays an important role in maintaining the structure 

and function of desert ecosystems, such as blocking wind, promoting sand fixation, and improving the climate 
(Ma et al., 2021), and is known as the "guardian of the desert". It also has some economic value as a host for the 

precious Chinese herb Cistanches, and it can be used for firewood and livestock fodder in Xinjiang and other 
places (Song et al., 2006). 

Transcription factors (TFs), also known as trans-acting factors, play a crucial role in the regulation of 
plant growth and development, acting as regulatory switches for genes that are involved in the regulation of 
gene expression in response to various environmental factors, thus ultimately controlling the metabolic 
processes of the plant body (Manna et al., 2021; Romani and Moreno, 2021). The first MYB gene identified 

was V-myb, an oncogene derived from avian myeloblastoma virus (Klempnauer et al., 1982), and the first MYB 

gene identified in plants was ZmMYBC1 in maize (Paz-Ares et al., 1987). The MYB transcription factor family 

contains a conserved structural domain, the MYB DNA-binding domain, which is divided into two distinct 
regions, the N-terminus and the C-terminus, with the N-terminus being the conserved MYB DNA-binding 
domain and the C-terminus being the transcriptional regulatory domain, which is not conserved. The MYB 
DNA-binding domain usually consists of 1-4 incompletely repeated amino acid repeats (R), each typically 
consisting of 53 amino acids, which form three α-helices. The second and third helices are folded helix-turned-
helical (HTH) structures, forming a hydrophobic structure through which MYB transcription factors bind to 
the major groove of the target gene and thus play a regulatory role (Stracke et al., 2001). Depending on the 

number of MYB protein repeats (R), they are generally classified into four categories, including MYB proteins 
containing single or partial MYB repeats (these MYB genes are collectively referred to as "MYB-related"), 
R2R3-MYBs containing two repeats (R2R3), R1R2R3s containing three repeats, and MYB-related proteins 
that mainly play regulatory roles in cellular morphological changes, secondary metabolism, and chloroplast 
development (Ambawat et al., 2013); the upstream promoter region of 3R-MYB is rich in mitosis-specific 

activator core sequences, which mainly play an important role in plant cell cycle control. They also participate 
in plant abiotic stress responses (Feng et al., 2017). Among them, 4R-MYB transcription factors are a less 

studied class in plants; R2R3-MYB transcription factors are the most widely distributed and abundant among 
plant species and therefore the most studied class of MYB genes (Sun et al., 2019; Dubos et al., 2010). R2R3-

MYB genes have been identified in a variety of organisms, and in addition to 126 R2R3-MYB genes identified 
in the model plant Arabidopsis, 110, 157, 108, 207, and 70 R2R3-MYB genes have been identified in rice, maize, 

grape, poplar, and sugar beet, respectively (Matus et al., 2008; Du et al., 2012; Katiyar et al., 2012; Stracke et 

al., 2014; Zhao et al., 2020). However, there are no reports on the identification of the R2R3-MYB gene family 

in H. ammodendron. 

R2R3-MYB transcription factors are involved in a variety of biological processes in plants. including 
plant physiological and biochemical processes such as primary and secondary metabolic processes. Yang et al. 

(2022) found that the R2R3-MYB-like transcription factor VcMYB4a in blueberry regulates lignin 
biosynthesis, and Zhu et al. (2020) found that CmMYB8 in chrysanthemum negatively regulates lignin 

biosynthesis and flavonoid biosynthesis. R2R3-MYB transcription factors are also involved in phytohormone 
response processes (Stracke et al., 2001). The R2R3-MYB transcription factor in buckwheat is induced by 

abscisic acid (ABA), jasmonic acid (JA), and salicylic acid (SA) hormones (Gao et al., 2016). RhMYB108 in 

rose acts as an effector of ethylene and JA to regulate petal senescence (Zhang et al., 2019), and the Arabidopsis 
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transcription factor MYB77 regulates growth hormone signalling (Shin et al., 2007). R2R3-MYB transcription 

factors are also involved in plant responses to biotic and abiotic stresses (Stracke et al., 2001). Shriti et al. (2023) 

found that overexpression of the chickpea CaMYB78 transcription factor enhanced resistance to Fusarium 

acanthoides, and overexpression of the wild soybean R2R3-MYB transcription factor GsMYB15 in Arabidopsis 

enhanced resistance to salt stress and cotton bollworm (Shen et al., 2018). The desert moss Syntrichia caninervis 

was found to have a large number of MYB genes differentially expressed in response to cold and frost damage, 
suggesting that these genes play an important role in the regulation of cold and frost stress responses in desert 
plants (Salih et al., 2023). MYB transcription factors play an important role in dune reed adaptation to desert 

environments and an important role in resisting abiotic stress (Cui et al., 2023). CgMYB1 expression is induced 

by salt stress and cold stress in Chenopodium glaucum, which is a member of the family Chenopodiaceae, and 

overexpression of this gene in Arabidopsis increases salt tolerance and cold tolerance (Zhou et al., 2023). 

PeR2R3s in poplar (Populus euphratica) plays an important role in ABA-mediated drought stress response (Sun 

et al., 2023), but MYB transcription factors have been less studied in the desert plant H. ammodendron. 

Herein, we identified the R2R3-MYB gene family in H. ammodendron by bioinformatics, and 

transcriptomic data analysis yielded the differentially expressed gene HaMYB63 for subcellular localization and 
transcriptional self-activation analysis, which may be involved in the abiotic stress response in H. 

ammodendron. 

 
 

Materials and MethodsMaterials and MethodsMaterials and MethodsMaterials and Methods    
 
Plant materials 

On July 28, 2021, at 14:00, assimilated branches of wild H. ammodendron with good and consistent 

growth and different colours and hardness levels were selected from the southern edge of the Gurbangtungut 
Desert (84°31'-98°80'E, 44°11'-46°21'N) in the Junggar Basin, Xinjiang, China. The green and soft assimilated 
branches and the reddish-green and hard assimilated branches (abbreviated as “GG” and “RG”, respectively) 
were selected from the southern margin of the wild H. ammodendron distribution. The collected samples were 

quickly placed in a liquid nitrogen tank, brought to the laboratory, stored in a -80 ℃ freezer, and sent to 
Biomarker Technologies for transcriptome sequencing, with three biological replicates selected for each set of 
samples. 

The mature seeds of H. ammodendron were preserved in the laboratory, and full-grained and uniformly 

sized H. ammodendron seeds were selected for planting. First, 75% ethanol was added to the centrifuge tube 

containing the H. ammodendron seeds, the supernatant was pipetted for 30 s and aspirated, distilled water was 

added and the seeds were washed again with 75% ethanol, 5% NaClO solution was added once, and then 
distilled water was used 5-6 times until the seeds were cleaned. H. ammodendron seeds were placed in sterile 

triangular flasks containing 1/2 MS solid medium and incubated until the assimilated branches of H. 

ammodendron seedlings reached approximately 10 cm for drought and salt treatment. The assimilated branches 

were treated with 20% PEG6000 solution and 200 mmol/L NaCl solution at 25 ℃ for 0 h, 2 h, 4 h, 6 h, 12 h 
and 24 h. Three biological replicates were performed for each of the above experimental samples. 

 
Identification of R2R3-MYB family members in the H. ammodendron genome 

The genomic data and proteomic data of H. ammodendron were downloaded from Figshare 

(https://doi.org/10.6084/m9.figshare.17128424.v1.). Arabidopsis MYB protein sequences were downloaded 

from the Arabidopsis database TAIR (https://www.arabidopsis.org/). We obtained sequences from the Pfam 

database (http://pfam.xfam.org/) to download the Hidden Markov Model (HMM) of the MYB structural 
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domain (PF00249) and used HMMER software (http://hmmer.org/) (Potter et al., 2018) to identify candidate 

MYB genes in H. ammodendron using an HMMER search. The obtained candidate genes were submitted to 
the NCBI-CDD database after removing redundant sequences (https://www.ncbi.nlm.nih.gov/cdd/) (Lu et al., 

2020), the Pfam database, and SMART (http://smart.embl.de/) for structural domain validation and further 

identification of MYB gene family members. The obtained MYB genes were named according to their position 
on the chromosome. The gene family was identified using the ExPASy online database ProtParam tool 
(https://web.expasy.org/protparam/) (Artimo et al., 2012) to predict the number of amino acids, theoretical 

isoelectric point, lipid index and other relevant physicochemical properties by WoLF PSORT 
(https://wolfpsort.hgc.jp/) (Horton et al., 2007) online software for protein subcellular localization prediction. 

 
Chromosomal location of the H. ammodendron R2R3-MYB gene family 

TBtools software (Version 1.09876) (Chen et al., 2020) was used to extract chromosomal location 

information for members of the H. ammodendron MYB gene family, and Mapchart software (Version 2.32) 

(Voorrips, 2002) was used to map the chromosomal localization of the HaMYB gene. 
 
Phylogenetic analysis of the H. ammodendron R2R3-MYB gene family 

The MYB protein sequences of Arabidopsis and H. ammodendron were compared using multiple 

sequences in Clustal W of MEGA 6 (Tamura et al., 2013) software, and then based on the results of the 

comparison, a phylogenetic tree was reconstructed using the ML method, where the bootstrap value was set to 
2000. The resulting phylogenetic tree was visualized and beautified using the online tool Evolview 
(https://evolgenius.info/) (Subramanian et al., 2019). 

 
Covariance analysis of the H. ammodendron R2R3-MYB family 

To determine the evolutionary history of the H. ammodendron R2R3-MYB family, the HaR2R3-MYB 

gene replication events were analysed using Multiple Collinear Scanning Toolkit (MCScanX) (Wang et al., 

2012), and the HaR2R3-MYB genes were covalently analysed with the R2R3-MYB genes in Arabidopsis, sugar 

beet, and spinach using TBtools software. The Dual Synteny Plot tool was applied to plot the covariance. 
 
Conserved motifs and gene structure of the H. ammodendron R2R3-MYB gene family 

Evolutionary trees were reconstructed for HaR2R3-MYBs using MEGA 6 software to obtain nwk files. 
The nwk files were obtained by MEME (Version 5.4.1) online software (https://meme-

suite.org/meme/doc/meme.html) (Bailey et al., 2009) for motif analysis (setting the number of conserved motifs 

to 10), with a minimum motif of 6 and a maximum motif of 50. All the above results were visualized using 
TBtools software. 

 
Analysis of cis-acting elements in the promoter region of H. ammodendron R2R3-MYB genes 

To better understand the function of the HaMYB gene, the 2000 bp DNA sequence upstream of the 
H. ammodendron MYB gene was extracted using TBtools software, using the PlantCARE database 

(http://bioinformatics.psb.ugent.be/webtools/plantcare/html/) in the Search for CARE tool to predict the 

possible cis-acting elements and TBtools software to visualize and analyse them. 

 
qPCR 

Based on the H. ammodendron cDNA sequence, the Primer-BLAST tool in the NCBI database 

(https://www.ncbi.nlm.nih.gov/tools/primer-blast/index.cgi?LINK_LOC=BlastHome) (Ye et al., 2012) was 

used to design realtime fluorescence quantitative PCR (qPCR) primers (Supplementary Table 1). The 
expression of candidate genes was analysed by qPCR using H. ammodendron cDNA as a template, 18s rRNA 
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was used as the internal reference gene, and three replicates were performed for each sample. Total RNA was 
extracted using the Biomarker Plant Total RNA Isolation Kit (Biomarker, China). Reverse transcription was 
performed using the BiomarkerScript Ⅱ 1st Strand cDNA Synthesis Kit (Biomarker, China). qPCR 
experiments were performed using Biomarker 2X SYBR Green Fast qPCR Mix (Biomarker, China), and a 
Roche LightCycler96 Fluorescent PCR instrument was used for fluorescence quantification experiments. The 
conditions for fluorescence quantification experiments were 95 oC for 3 min, followed by 40 cycles at 95 oC for 
5 s and 60 oC for 30 s. Relative quantification was performed using the 2–ΔΔCt method (Livak and Schmittgen, 
2001). 

 
Transcriptome data analysis 

H. ammodendron assimilated branch RNA was extracted using the Total Plant RNA Extraction Kit 

(Biomarker, China), and the concentration and purity of RNA were examined to select high-concentration 
(concentration ≧ 300 μg/g) and high-purity (1.8 < OD260/280 < 2.0) RNA for subsequent sequencing analysis. 
Eukaryotic mRNA was enriched with magnetic beads with Oligo (dT) and randomly interrupted by adding 
fragmentation buffer. cDNA was obtained by reverse transcription using mRNA as a template, purified, end-
repaired, A-tailed and ligated with sequencing junctions, and finally enriched by PCR to obtain cDNA libraries. 
After library construction, the effective concentration of the library (effective library concentration > 2 nM) 
was accurately quantified by qPCR to ensure the quality of the library, and finally, RNA sequencing was 
performed on H. ammodendron using the Illumina NovaSeq6000 high-throughput sequencing platform. The 

raw data obtained from the sequencing platform were filtered to obtain clean data, and the clean data were used 
for subsequent analysis. Using HISAT2 (Kim et al., 2019) software, the clean data were compared with the 

reference genome to obtain mapped data, and the mapped data were used for subsequent analysis. 
Subsequently, the above Reads were assembled and quantified by StringTie software (Pertea et al., 2015) 

comparison. After the comparative analysis, StringTie comparison was used to assemble and quantify the above 
Reads. DESeq2 (Love et al., 2014) software with the Benjamini-Hochberg method was used to correct the p 

values (p values) obtained from the original hypothesis test during differential expression analysis. The p value 

was used as the key index for differentially expressed gene screening, and the conditions for screening 
differentially expressed genes were fold change > 1.5 and p value < 0.05. GO and KEGG annotation and 

enrichment analysis were performed on the screened differentially expressed genes. Transcriptome data 
validation qPCR primers are shown in Supplementary Table 1. 

 
Gene isolation and plasmid construction 

The CDS of HaMYB63 was cloned using the high-fidelity enzyme DNA polymerase (Thermo Fisher, 

USA), the pCAMBIA1304 vector was selected as the subcellular localization vector, and Nco I and Spe I were 

selected as the digestion sites to construct the pCAMBIA1304-GFP-HaMYB63 subcellular localization vector 
GV3101. HaMYB63, the nuclear localization marker named HY5-RFP, and Agrobacterium tumefaciens OD600 

(pSoup-19), which facilitates heterologous protein expression, were adjusted to 1.0 using MS suspension 
(containing 10 mM MgCl2 and 100 μM acetosyringone) and subsequently mixed at a volume ratio of 1:1:1. 
Inject the mixture into the leaves of the tobacco, incubated for 24-48 h in the dark and observed at a wavelength 
of 488 nm using a laser confocal microscope (Zeiss, Germany). 

The pGBKT7 vector was used as the self-activating vector. The Nde I and BamH I endonucleases 

(Thermo Fisher, USA) were selected to linearize the pGBKT7 vector, and the self-activating vector was 
constructed using the homologous recombination kit (Vazyme, China) with the homologous recombination 
method. The vector plasmid was transferred into yeast AH109 receptor cells, and the yeast cells were cultured 
in SD-Trp-deficient medium, SD-Trp/-His/Ade-deficient medium and SD-Trp/-His/Ade-deficient medium 
containing X-α-gal at 28 °C for 2-3 d. Yeast growth and discolouration were observed to determine whether 
HaMYB63 has transcriptional self-activating activity. 
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Results Results Results Results     
 
Identification and analysis of R2R3-MYB genes and chromosomal localization in H. ammodendron 

To systematically study the copy number changes in the MYB gene family during the evolution of H. 

ammodendron, first, we used HMMsearch to comprehensively search MYB genes in the H. ammodendron 

genome, remove redundancies, screen a total of 151 sequences containing MYB conserved structures, screen 
the sequences containing only 2 repetitive sequences among the 151 sequences, and validate the screening 
results in the NCBI-CDD database and Pfam database and on the SMART website. Finally, we identified 78 
R2R3-MYB genes in H. ammodendron and named them HaMYB01~HaMYB78 according to their position 

on the chromosome (Figure 1). Prediction of the physicochemical properties of H. ammodendron R2R3-MYBs 

revealed that their encoded proteins contain 172 (HaMYB06) to 1609 (HaMYB56) amino acid residues with 
relative molecular masses ranging from 19865.71 (HaMYB06) to 175360.27 (HaMYB56) and a theoretical 
isoelectric point of 4.82 (HaMYB42)~9.71 (HaMYB11), and subcellular localization showed that 73 R2R3-
MYB proteins were localized in the nucleus, 2 in the cytoplasm and 3 in the chloroplast (Supplementary Table 
2). 

According to the H. ammodendron R2R3-MYB chromosome localization map (Figure 1), the HaR2R3-

MYB genes were unevenly distributed on nine chromosomes, including chromosome 1, which contained the 
fewest R2R3-MYB genes at only 4, chromosome 7, which contained the most R2R3-MYB genes at 12, and 2 
and 8, which contained 10 R2R3-MYB genes each. The number of R2R3-MYB genes on the remaining 
chromosomes varied, and most R2R3-MYB genes were distributed at both ends of the chromosomes. 

 

 
FFFFigureigureigureigure    1111.... Chromosome localization map of the R2R3-MYB family of H. ammodendron 

 
Evolutionary analysis of the R2R3-MYB genes of H. ammodendron 

To further analyse the evolutionary relationships of the H. ammodendron R2R3-MYB genes, a 

phylogenetic tree was reconstructed between Arabidopsis R2R3-MYBs and H. ammodendron R2R3-MYBs 

(Figure 2). The phylogenetic tree was reconstructed using MEGA6 software for multiple sequence alignment 
with the ML method, in which the number of bootstrap replicates was set at 2,000 and Poisson correction was 
applied. The HaR2R3-MYB family was divided into 32 subgroups (named G1-G32) according to a 
classification scheme similar to that of Arabidopsis R2R3-MYBs. No HaR2R3-MYB members were found to 

be distributed in the two subgroups S15 and S12, while G1, G2, G3, and G4 contained only members from 
HaR2R3-MYB, and other HaR2R3-MYBs were mainly distributed in G8 (S21), G16 (S6+S5), G25 (S14), 
and G29 (S1). The number of Arabidopsis members in these subgroups was higher than that of H. 

ammodendron members. The fact that the number of members in these subgroups is higher than that of H. 
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ammodendron, sometimes up to twice as many, suggests that the R2R3-MYB members between H. 

ammodendron and Arabidopsis segregated during the evolutionary process. 

 

 
Figure 2.Figure 2.Figure 2.Figure 2. Evolutionary analysis of the H. ammodendron R2R3-MYB family and Arabidopsis R2R3-MYB 

family. The triangles indicate Arabidopsis R2R3-MYB members, and the circles indicate H. ammodendron 

R2R3-MYB members. 

 
Collinearity analysis of H. ammodendron R2R3-MYBs 

To further investigate the evolution of the H. ammodendron R2R3-MYB family, we first performed a 

covariance analysis within the species (Figure 3 A). The analysis revealed the presence of gene duplication 
events in the H. ammodendron R2R3-MYB family, with three gene pairs undergoing fragmentary duplication 

events, including duplication between HaMYB54 (SS28368.t1) and HaMYB17 (SS11433.t1), HaMYB44 

(SS24322.t1) and HaMYB36 (SS19636.t1), and HaMYB42 (SS23511.t1) and HaMYB27 (SS15191.t1), and 

no tandem duplication events were found. This indicates that some H. ammodendron R2R3-MYB genes are 

from gene duplication and that all of them are from fragment duplication. 
We further performed covariance analysis of the H. ammodendron MYB genes with MYB genes of other 

species, including the model plant Arabidopsis and the plants sugar beet (Beta vulgaris) and spinach (Spinacia 

oleracea). The HaMYB gene is genetically homologous to those of other species, and the analysis revealed that 

the HaMYB gene is covariant with genes in Arabidopsis (55 direct homologous pairs distributed on all 
chromosomes), sugar beet (52 direct homologous pairs distributed on all chromosomes) and spinach (37 direct 
homologous pairs distributed on all chromosomes) (Figure 3 B). 
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Figure 3.Figure 3.Figure 3.Figure 3. R2R3-MYB covariance analysis. (A) Analysis of H. ammodendron R2R3-MYB replication 

events. (B) Covariance analysis of H. ammodendron R2R3-MYBs with those of other species. (a) 

Covariance analysis of H. ammodendron with Arabidopsis; (b) covariance analysis of H. ammodendron with 

sugar beet; (c) covariance analysis of H. ammodendron with spinach. 

 
Analysis of the structure and conserved sequences of H. ammodendron R2R3-MYB genes 

To further analyse the composition of the H. ammodendron MYB genes, we mainly analysed their full-

length protein sequences and conserved sequences (Figure 4, Supplementary Figure 1). Analysis of the 
conserved sequences of the H. ammodendron R2R3-MYB family revealed that most were at the 5' end. The 

number and distribution of conserved sequences of members in the same subgroup were relatively conserved, 
with five conserved sequences in subgroup G13, four conserved sequences in subgroup G1, three conserved 
sequences in subgroups G5-G12, and five to six conserved sequences in the remaining subgroups except for 
subgroups G2-G4, suggesting that the conserved sequences may be related to the exercise of MYB protein 
function. Structural analysis of the H. ammodendron R2R3-MYB genes revealed that they contain different 

numbers of introns, among which HaMYB01 has the highest number (11) of introns and the gene with the 
lowest number of introns has only one intron, for example, the other members of the G1 subgroup except for 
HaMYB66. This indicates the number of conserved sequences in H. ammodendron R2R3-MYBs is not directly 

related to the number of introns in the genes. 
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Figure 4.Figure 4.Figure 4.Figure 4. Conserved structure and gene structure analysis of H. ammodendron R2R3-MYB genes 

 
Analysis of cis-acting elements of the H. ammodendron R2R3-MYB gene promoter 

Transcription factors play a very important role in the regulation of gene expression, mainly by 
recognizing specific DNA sequences to regulate the expression of downstream genes at different spatial and 
temporal levels. Analysis of the cis-acting elements in the HaR2R3-MYB gene promoter showed that there are 

various numbers of cis-acting elements in the HaR2R3-MYB transcription factors, which are divided into two 

main categories, cis-acting elements related to plant hormones, such as SA, JA, auxin, ABA, and gibberellin 

(GA)-related cis-acting elements, and cis-acting elements associated with abiotic stresses, such as defence and 

stress response elements and low-temperature response elements. Hormone-related cis-acting elements were 

present in the promoter regions of almost all HaR2R3-MYB genes, with most hormone-response-related 
elements responding to JA and ABA and approximately the same numbers of both cis-acting elements 

associated with abiotic stresses (Figure 5). This indicates that the H. ammodendron R2R3-MYB genes are 
likely to be involved in different hormone signalling pathways, with most of them involved in JA and ABA 
signalling, as well as in the abiotic stress response in plants, with an important overall role in plant stress-related 
processes. 
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Figure 5.Figure 5.Figure 5.Figure 5. Analysis of cis-acting elements in H. ammodendron R2R3-MYB genes 
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qPCR of H. ammodendron R2R3-MYB genes under drought and salt stress 

To investigate the role of HaR2R3-MYBs in H. ammodendron stress resistance, we used PEG6000 and 

NaCl solutions to simulate drought and salt stress, respectively. Based on the evolutionary analysis of R2R3-
MYBs in Arabidopsis and H. ammodendron and reports related to the resistance role of R2R3-MYB genes in 

Arabidopsis, we finally chose to aggregate the subgroups G27 (S2), G29 (S1), and G30 (S11) (HaMYB12, 

HaMYB13, HaMYB14, HaMYB22, HaMYB27, HaMYB42) under salt stress. qPCR experiments were 

performed under salt stress conditions (Figure 6 A), and six genes clustered in subgroups G27 (S2), G29 (S1), 
and G8 (S21) were selected for qPCR analysis under drought conditions: HaMYB02, HaMYB11, HaMYB22, 

HaMYB27, HaMYB37, and HaMYB42 (Figure 6 B, Supplementary Table 1). The qPCR results showed that 

the expression of these genes varied at different periods, and their expression was higher than that at 0 h at 
different periods of abiotic stress, suggesting that these genes are involved in the resistance response of H. 

ammodendron. Among them, HaMYB22, HaMYB27, and HaMYB42 showed significant changes in 

expression under both drought stress and salt stress conditions, suggesting that HaMYB22, HaMYB27, and 

HaMYB42 are involved in both the salt stress response and the drought stress response of H. ammodendron. 

 

 
FFFFigureigureigureigure    6666.... Expression analysis of HaMYB genes under stress. (A) Expression analysis of HaMYB genes 

under salt stress. (B) Expression analysis of HaMYB genes under drought stress 

 
Transcriptome data analysis 

The differentially expressed genes were screened with |log2-fold change|≥1.5 and p value < 0.05, and the 

results revealed 2505 differentially expressed genes in GG and RG, including 1569 upregulated genes and 936 
downregulated genes (Figure 7 A). GO and KEGG annotation analysis and enrichment analysis were 
performed for all genes. GO enrichment of differentially expressed genes (Figure 7 B) showed that differentially 
expressed genes were mainly enriched in cellular process, metabolic process, single-organism process, and other 
biological processes. The cellular components mainly included cell, cell part, membrane and other components. 
The molecular function category mainly included binding, catalytic activity, transporter activity and other 
functions. The differentially expressed genes were found to be mainly enriched in the pathways of plant-
pathogen interactions, phenylpropane metabolism, and starch and sucrose metabolism (Figure 7 C). The 
differentially expressed genes included MYB transcription factors, of which HaMYB47 (SS25656), HaMYB63 

(SS33758), HaMYB24 (SS14971), and HaMYB28 (SS15728) showed significant changes in expression, with 

HaMYB63 and HaMYB28 showing higher expression in RG than in GG and HaMYB47 and HaMYB24 in 

GG than in RG. This suggests that these genes are involved in the secondary metabolic pathway of H. 

ammodendron in summer, causing the difference in colour and hardness of assimilated branches. To verify 
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whether the transcriptome data were reliable, we randomly selected 12 genes for qPCR experiments, and the 
results showed that the transcriptome data were reliable (Figure 7 D). 

 

 
Figure 7Figure 7Figure 7Figure 7.... Transcriptome data analysis results. (A) Volcano plot of differentially expressed genes. (B) The 
results of GO enrichment analysis of differentially expressed genes. (C) The results of KEGG enrichment 
analysis of differentially expressed genes. (D) qPCR results of 12 differentially expressed genes. 

 
Subcellular localization and transcriptional autoactivation analysis of HaMYB63 

Based on the results of transcriptome data analysis, which showed that HaMYB63 was significantly 

differentially expressed in GG and RG and showed upregulation in RG, it was hypothesized that this gene plays 
an important role in H. ammodendron, and therefore, the protein characteristics of HaMYB63 were analysed. 

To determine the subcellular localization of HaMYB63 protein in H. ammodendron, we obtained the 

CDS of HaMYB63 by cloning using a high-fidelity enzyme (Thermo Fisher, USA), selected the 

pCAMBIA1304 vector as the subcellular localization vector, and selected Nco I and Spe I as the enzyme cleavage 

sites to construct the pCAMBIA1304-GFP-HaMYB63 subcellular localization vector to express HaMYB63 
fused with GFP. Observations under laser confocal microscopy showed (Figure 8 A) that HaMYB63 was 
expressed in the nucleus, which was consistent with our WoLF PSORT (https://wolfpsort.hgc.jp/) online 

prediction results. 
To analyse whether HaMYB63 has transcriptional self-activating activity, we constructed 

transcriptional self-activating vectors based on the CDS of HaMYB63 and the pGBKT7 vector sequence, 

transferred the constructed vectors into the yeast AH109 receptor state, and grew yeast negative control and 
positive control and yeast containing HaMYB63 in SD-Trp-deficient medium to observe yeast growth (Figure 
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8 B). The fact that all three yeasts were able to grow indicates that all three vectors were transferred into yeast 
cells separately. The positive yeast and pGBKT7-HaMYB63 yeast could both grow on SD-Trp/-His/Ade-
defective medium, the negative yeast could not grow normally, and the positive yeast and pGBKT7-HaMYB63 
yeast grown on SD-Trp/-His/Ade-defective medium containing X-α-gal/Ade-deficient medium turned blue, 
while the negative yeast could not grow. These results suggest that the HaMYB63 protein has transcriptional 
self-activating activity. 

 

 
Figure 8.Figure 8.Figure 8.Figure 8. HaMYB63 protein characterization. (A) Subcellular localization results. (B) Transcriptional self-
activation results. P.C. indicates positive control, N.C. indicates negative control. 

 
    
DiscussionDiscussionDiscussionDiscussion    
 
The cis-acting elements of promoters play a key role in activating gene expression, and analysis of the cis-

acting elements of the HaMYB family revealed the highest number of cis-acting elements associated with the 

hormones JA and ABA and approximately the same number associated with defence and low-temperature 
stress. MYB33, MYB65, and MYB101 are overexpressed in Arabidopsis and potato, leading to stomata showing 

hypersensitivity to ABA and thus improving tolerance to drought (Wyrzykowska et al., 2022), and cotton 

R2R3-type MYB transcription factors positively regulate cotton resistance to yellow wilt through the lignin 
biosynthesis and JA signalling pathways (Zhu et al., 2022). This suggests that HaR2R3-MYB family members 

are likely to regulate resistance to abiotic stresses in H. ammodendron by participating in the ABA and JA 

signalling pathways, while HaR2R3-MYB family members may also be involved in plant low-temperature stress 
and defence mechanisms. 

R2R3-MYB genes have been shown to play an important role in response to biotic and abiotic stresses 
(Stracke et al., 2001). At present, stress-related MYB genes have been identified in desert plants, such as C. 

glaucum and P. euphratica (Zhou et al., 2023; Sun et al., 2023). Under drought stress and salt stress, the 

expression of 6 genes in H. ammodendron was analysed by qPCR, and the expression levels of these genes were 

significantly increased under the two treatments, indicating that these genes may be involved in the abiotic 
stress response of H. ammodendron. In general, proteins clustered in the same subgroup have similar biological 

functions, and members of the S1, S2, S11, and S21 subgroups in Arabidopsis, such as AtMYB60 and AtMYB96, 
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have been reported to be involved in the ABA signalling pathway and the physiological regulation of response 
to drought treatment (Rusconi et al., 2013; Yao et al., 2021), so the HaR2R3 homologues with S1, S2, S11, 

and S21 MYB genes may have similar functions. As shown in the present study, HaR2R3-MYBs in the S1, S2, 
S11, and S21 subgroups may be involved in salt stress and drought stress responses, and the functions of these 
genes were further verified by qPCR experiments. 

Phylogenetic evolutionary tree analysis of HaMYB genes and Arabidopsis genes revealed that 
HaMYB63 belongs to the same branch as AtMYB116, AtMYB62, AtMYB112, AtMYB108, AtMYB2, and 

AtMYB78, and it was shown that AtMYB112 plays a positive role in the biosynthesis of anthocyanins in 

response to salt stress and high-light stress in Arabidopsis (Lotkowska et al., 2015; Ampomah-Dwamena et al., 

2019). The expression level of the AtMYB108 homologous gene Hha072588 was significantly increased in 

Hibiscus hamabo, indicating that it plays an important role in resistance to drought stress (Wang et al., 2021); 

Arabidopsis thaliana overexpressing the AtMYB108-homologous gene RmMYB108 responds to freezing 

injury, salinity and water deficiency by increasing the activities of superoxide dismutase and peroxidase 
(Abubakar et al., 2022), suggesting that HaMYB63 is involved in H. ammodendron's response to abiotic stress. 

The results of subcellular localization of HaMYB63 show that it exists in the nucleus, and the results of 
transcriptional autoactivation show that it has transcriptional autoactivation activity, which suggests that 
HaMYB63 acts independently from other proteins when participating in the abiotic stress response of H. 

ammodendron, thus exerting its anti-stress functions.    

 
    
ConclusionsConclusionsConclusionsConclusions    
 
In summary, 78 R2R3-MYB genes were identified at the H. ammodendron genome level, and 

bioinformatic analysis was performed on these genes. These genes were divided into 32 subgroups, the 
HaR2R3-MYB genes were randomly distributed on nine chromosomes, and three gene pairs were found to 
have undergone fragment duplication. Cis-acting elements of HaR2R3-MYB genes showed that the genes of 

this family are involved in hormonal pathways and environmental stresses, and under drought stress and salt 
stress, the expression of HaMYB22, HaMYB27, and HaMYB42 was significantly changed. The transcriptome 

data showed that the expression of HaMYB63 changed significantly in different H. ammodendron samples, 

and it was high in the reddish-green and stiff assimilated branch samples. The subcellular localization of this 
protein showed that it was located in the nucleus, and the transcriptional self-activation results showed that it 
had transcriptional self-activation activity. The results of this study laid a foundation for understanding the 
function of R2R3-MYB genes and the molecular mechanism of resistance to stress in H. ammodendron. 
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