A review on ethnopharmacological utility, traditional knowledge and phytochemistry of *Aristolochia* species in Assam, India

Punam J. BORAH¹, Dipankar BORAH²*, Udipta DAS³, Tridip J. DAS⁴, Ruma SARMA¹

¹Cotton University, Department of Botany, Guwahati 781001, Assam, India; punamborah1997@gmail.com; sarmaruma8@gmail.com
²Goalpara College, Department of Botany, Goalpara 783101, Assam, India; dipankar.borah@goalparacollege.ac.in (*corresponding author)
³Tripura University, Department of Botany, Agartala 799022, Tripura, India; udiptadas93@gmail.com
⁴NIT Arunachal Pradesh, Department of Biotechnology, Yupia 791112, Arunachal Pradesh, India; tridipjd31@gmail.com

Abstract

Aristolochia L. (Aristolochiaceae) is widely used throughout South-East Asia for the treatment of several diseases. Different species of this genus are known by similar local names in Assam. This review aims to provide up-to-date information on *Aristolochia* species distributed in Assam, including its traditional uses, phytochemical and pharmacological properties, in exploring future therapeutic and scientific potentials. The information on ethnobotany, phytochemistry and pharmacological aspects were collected by performing literature searches. Assam hosts a total of six species of *Aristolochia*. The taxonomy and distribution are presented. Traditionally the tubers are used by the local people to treat stomach pain, malaria, dysentery, high blood pressure, body pain, urinary tract infections, headache, impotency etc. It has considerable pharmacological properties including antimicrobial, antioxidant, anti-inflammatory, anti-cancer, anti-diabetic, anti-fertility, anti-venom, anti-diarrhoeal, anti-pruritic, anti-feedant and toxicological activities. Approximately a total of 200 compounds have been isolated from these species. So far, pharmacological investigations are only done on three *Aristolochia* species, whereas the other three are simultaneously used for the same purposes. Most of the medicinal properties attributed to these *Aristolochia*, have not yet been investigated and proven under a scientific study. This highlights the importance of *Aristolochia* as a valuable candidate for future studies.

Keywords: *Aristolochia*; bioactive compounds; distribution; flora of Assam; pharmacology; taxonomy; traditional knowledge

Introduction

Medicinal plants serve humans as a great source of therapeutics and pharmaceutical manufacturing. The practices of using medicinal plants in the treatment of common diseases are part of the traditional knowledge among the different communities throughout the world. The dependencies of the traditional communities on the naturally occurring herbs are due to better cultural acceptability, compatibility and adaptability of the
plants with the human body and lesser side effects (Gupta et al., 2010; Oladeji, 2016). Research carried out during the past few years have resulted in the isolation of more than a thousand bioactive compounds from medicinal plants having disease-preventing properties as antioxidants, detoxifying agents, immunity-potentiating agents and neuropharmacological agents (Saxena et al., 2013).

The increasing demands of herbal medicine in the 21st century in both developed and developing countries indicate the public interest in traditional, complementary and alternative medicines. There is a belief that herbal medicines provide long-lasting healing, minimal adverse effects, lesser cost, well-practiced knowledge and promote healthier living in contrast to the adverse effects of allopathic drugs (Gupta et al., 2010). In rapidly developing countries such as India and China, the role of plant-derived medicine in the health care system is about 80% (Khan, 2016). The active phytoconstituents may be a mixture of secondary metabolites like alkaloids, saponins, tannins, glycosides, phenols and flavonoids etc. The extraction, isolation, detection and identification of such phytochemicals are necessary for establishing the quality control, mechanism of their action on the body, safety and efficacy (Saxena, 2013; Ogunmefu, 2018).

The genus *Aristolochia* (Aristolochiaceae) is widely distributed in tropical to temperate regions throughout the world (Hwang et al., 2003). It is the largest genus in the family accounting for about 534 accepted species (POWO, 2019), of which India is represented by 20 species (Borah et al., 2019; revised). They are mostly perennial climbers, with ovate cordate leaves and fusiform rhizomes. It can be differentiated from its other congeners (*Saruma* Oliv., *Thottea* Rottb. and *Asarum* L.) by a combination of several characters such as woody or herbaceous habit, axillary flowers arranged in fascicles or solitary, uniseriate perianth, connate carpels and dry capsules.

Among the 20 species of *Aristolochia* distributed in the country, six of them are presently reported growing wild from the state of Assam (Borah et al., 2019). *Aristolochia indica* L. is found in Lower Assam, *A. cathcartii* Hook.f. is distributed towards the both the banks of the River Brahmaputra in Upper Assam, whereas *A. saccata* Wall. is towards its South bank (doubtful). *A. platanifolia* (Klotzsch) Duch., *A. assamica* D. Borah & T.V. Do towards the foothills of Arunachal Pradesh in Upper Assam, on either side of the Brahmaputra basin and *A. acuminata* Lam. (syn: *A. tagala* Cham.) is found throughout the region and is the most widespread species, among its congeners (Figure 1). *A. cathcartii*, *A. platanifolia* and *A. saccata* falls under the subgenus *Siphisia* and can be differentiated from all other species by their strongly curved perianth, U- or horseshoe shaped tube and a 3-lobed gynostemium. *A. cathcartii* and *A. saccata* are very close allies and are often confused, *A. cathcartii* is recognized by rectangular limb, inner surface of limb lobes covered with bristle-like papillae and purple dotted throat vs. irregularly circular limb, papillae and dots absent in *A. saccata*. Whereas, *A. platanifolia* can be distinguished from both of them, by its dissected leaves and a bell-shaped limb. The remaining three falls under the subgen. *Aristolochia* series *Podanthemum* and subgen. *Aristolochia* series *Aristolochia*. *A. assamica* can be recognized by the absence of stipe absent between the ovary and the utricle and terete branches (series *Aristolochia*) vs. stipe present between the ovary and the utricle and branches angular or ribbed (series *Podanthemum* with the remaining two species). *A. acuminata* is distinguished by orbicular to ovate lamina with a long petiole up to 5 cm whereas, *A. indica* by obtuse-oblong to oblong-lanceolate lamina with a short petiole up to 2 cm (Do et al., 2015; Borah et al., 2019).

However, no comprehensive review of the genus has been reported from this particular region. The present review is aimed to focus on providing information about traditionally used natural medicine, phytochemistry and pharmacology of *Aristolochia* species from Assam, India. We tried summarizing the best available evidence of traditional uses, phytoconstituents and pharmacological activities regarding *Aristolochia* spp. along with structural features of some important phytoconstituents. Multiple databases and platforms Google Scholar, Scopus, PubMed, Web of Science, ResearchGate and Academia were searched for relevant studies which included multiple keywords to elicit the data on *Aristolochia*. Chemical structures were drawn using Chem Draw Ultra 8.0 software by following the PubChem database (Figure 2).
Figure 1. Aristolochia species distributed in Assam: A. *A. platanifolia*, B. *A. cathcartii*, C. *A. assamica*, D. *A. acuminata*, E. *A. indica*
(A by Khyanjeet Gogoi, B-D by Dipankar Borah & E by Goutam Panda)

Traditional uses of Aristolochia species

Aristolochia spp. has been used in traditional medicine by different communities around its occurrence for a long time. The tubers of *Aristolochia* are used against a multitude of ailments in Assam. Correlating the ethnomedicinal reports with modern pharmacological and phytochemistry studies, shows consistency with the latest findings. *A. acuminata* is used to treat diarrhoea and dysentery by several tribes residing in Assam (Rao, 2019). *A. saccata* is used to treat stomach ache, constipation, dysentery, fever, body pain, jaundice, sprains and fracture by the Karbi, Tiwa, Pnar and Bodo-Kachari people residing in Karbi-Anglong districts of Assam (Basumatary *et al.*, 2014; Teron, 2019). The population in Majuli Island and around Gibbon Wildlife Sanctuary uses its roots to treat tonsillitis, cough, piles, malaria fever and diarrhoea (Sarmah and Saikia, 2014; 2016). The roots of *A. indica* are used to heal wounds and to enhance fertility in males by the traditional healers of Dhemaji district of Assam (Taid *et al.*, 2014). It has also been reported to be used by the people of Dibrussakhawa Biosphere Reserve for the treatment of certain asthmatic problems and skin diseases such as leucoderma (Nath *et al.*, 2008; Purkayastha *et al.*, 2007). The Deori, Muttak and Nepalese community residing in the Dibrugarh district of Assam reported using the decoction of the leaves of *A. indica* to treat dysentery, diarrhoea and melena (Borah *et al.*, 2006). *A. cathcartii* is used against stomach aches, urinogenital disorders and as an insect repellent by the people in and around Manas Biosphere Reserve (Paul *et al.*, 2011 a, b). Similarly, the roots of *A. assamica* and *A. cathcartii* are used to treat stomach pain, malaria, dysentery, high blood pressure, body pain, urinary tract infections, headache and cough by the fringe people of Behali reserve forest in Biswanath district (Borah *et al.*, 2020). However, several other ethnomedicinal reports have been published for the studied species of *Aristolochia* outside Assam are shown in Table 1.
Table 1. Summary of traditional uses of the studied *Aristolochia* species outside Assam

<table>
<thead>
<tr>
<th>Species</th>
<th>Local name</th>
<th>Parts used</th>
<th>Traditional uses</th>
<th>Regions</th>
<th>References</th>
</tr>
</thead>
</table>
Reported phyto-compounds from *Aristolochia* species

The phytochemical analysis is must to justify the scientific accuracy in the usage of herbal medicine and unearth the basis of treating diseases efficiently. During the last couple of decades, extensive studies were done on the phytochemical constituents found in various plant species and the genus *Aristolochia* was no exception. The phytoconstituents of the genus were extensively studied and many scholars have reported numerous compounds of significant importance from the plants of this genus. Aristolochic acids and its derivatives, aristolactams, aporphines, protoberberines, isoquinolines, benzylisoquinolines, amides, flavonoids, lignans, diphenyl ethers, coumarins, tetralones, terpenoids, benzenoids, steroids were the secondary metabolites that have been characterized from the *Aristolochia* species (Kuo et al., 2012). In this section of the review, the constituents found in 3 out of 6 species of *Aristolochia* found in Assam are compiled and comprehensively presented in tabulated form (Table 2). Reliable data regarding the phytochemical constituents present in three species viz. *A. saccata*, *A. plataniifolia* and *A. assamica* were not found which indicates that scientific analysis of phytochemical constituents present in those species is yet to be isolated and studied.

Table 2. Phyto-constituents of *Aristolochia* species distributed in Assam

<table>
<thead>
<tr>
<th>Species</th>
<th>Phyto-constituents reported</th>
<th>Plant part</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. saccata</td>
<td>Aristolochic acid I</td>
<td>Leaves</td>
<td>Borah PJ et al., 2021</td>
</tr>
<tr>
<td></td>
<td>Aristolochic acid A, Aristolochic acid D</td>
<td></td>
<td>Ioset et al., 2002</td>
</tr>
<tr>
<td>A. canescens</td>
<td>Aristolochic acid A, Tuberosonine</td>
<td>Roots</td>
<td>Chen et al., 2007</td>
</tr>
<tr>
<td>A. assamica</td>
<td>Aristolochic acid I, Aristolochic acid III</td>
<td></td>
<td>Hadem et al., 2019</td>
</tr>
<tr>
<td>A. indica</td>
<td>Aristolochic acid A, Aristolochic acid II</td>
<td>Root</td>
<td>Tripatara et al., 2012</td>
</tr>
<tr>
<td></td>
<td>Antocyanidin 3-glycoside and 6-hydroxylated flavonol, Chalcone glycosides</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aristolochic acid B, Aristolochic acid D</td>
<td>Root</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Antisarkolin B, Antisarkolin C, Antisarkolin D, Antisarkolin E</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cepharanone A N-β-D-glucoside</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oxoiswarane, Aristolactone, Cepharanone A</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aristolactone I, Aristolactone II, Sauristolactone, Aristolactone I, Aristolactone II, 7-methoxy-aristolactone I, 3-hydroxy-4-methoxy-10-norpregnane-1-carboxylic acid</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ariskanin A, Ariskanin D, Ariskanin E, Aristolochic acid C, Ariskanin C, Ariskanin B, Aristolactam-N-β-Dglucoside, Cepharanone A N-β-D-glucoside</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oxoishwarane, Aristolactone, Cepharanone A</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>aristolactam IV, 3-hydroxy-4-methoxy-10-nitrophenanthrene-1-carboxylic acid</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>β-Caryophyllene, α-Humulene, Ishwarone, Caryophyllene oxide I, Ishwarol, Linalool, α-methyl ester, Ariskanin A, Ariskanin D, Ariskanin E, Aristolochic acid C, Ariskanin C, Ariskanin B, Aristolactam-N-β-Dglucoside, Cepharanone A N-β-D-glucoside</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oxoishwarane, Aristolactone, Cepharanone A</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>aristolactam IV, 3-hydroxy-4-methoxy-10-nitrophenanthrene-1-carboxylic acid</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>β-Caryophyllene, α-Humulene, Ishwarone, Caryophyllene oxide I, Ishwarol, Linalool, α-methyl ester, Ariskanin A, Ariskanin D, Ariskanin E, Aristolochic acid C, Ariskanin C, Ariskanin B, Aristolactam-N-β-Dglucoside, Cepharanone A N-β-D-glucoside</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oxoishwarane, Aristolactone, Cepharanone A</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>aristolactam IV, 3-hydroxy-4-methoxy-10-nitrophenanthrene-1-carboxylic acid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plant</td>
<td>Chemicals</td>
<td>Location</td>
<td>Reference</td>
</tr>
<tr>
<td>------------------</td>
<td>---</td>
<td>-------------------</td>
<td>--</td>
</tr>
<tr>
<td>A. cathcartii</td>
<td>Aristolactam I, Aristolactam AII, Aristolochic acid A, Aristolochic acid BII</td>
<td>Whole herb</td>
<td>Zhang et al., 2016</td>
</tr>
<tr>
<td>A. assamica</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. saccata</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. platanifolia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. sikkimensis</td>
<td>Aristolactone, Cepharadione, Cycloeucalenol, Kareninol, Rutin, Stigmasterol</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. hybridum</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. cephalotes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not cited</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 2. Chemical structures of some important Phyto-constituents of *Aristolochia* species
Pharmacological activity of reported Phyto-compounds of *Aristolochia*

Antimicrobial activity

The antibacterial activity of leaves of *A. acuminata* was studied by disc diffusion method against gram-positive *Staphylococcus lentus* and *Bacillus cereus*, gram-negative *Serratia marcescens*, *Candida albicans*, bacteria and fungi *Candida dubliniesis* and *Cryptococcus neoformans*. Acetone extract showed the highest inhibition zone against gram-positive organisms than against gram-negative organisms such as *Staphylococcus lentus* and *Bacillus cereus* (Herculus *et al.*, 2018).

Similarly, aerial parts of *A. indica* were also studied by disc diffusion method against *Pseudomonas aeruginosa*, *Bacillus subtilis*, *Staphylococcus aureus*, *Escherichia coli*, *Bacillus sphaericus* (syn. of *Lysinibacillus sphaericus*), *Salmonella typhimurium*. The extracts showed a moderate antibacterial activity (Shafi, 2002). Murugan and Mohan (2012) tested against *Staphylococcus aureus*, *Klebsiella pneumoniae*, *Bacillus subtilis*, *Escherichia coli*, *Salmonella typhi* and *Pseudomonas aeruginosa* and found that petroleum ether, acetone and methanol plant extracts showed good results against all the tested pathogens. Venkatadri *et al.* (2015) studied the whole plant extracts by agar well diffusion method against multidrug-resistant β-lactamases producing bacteria and ethanolic extract showed minimum inhibitory concentration values of 50-100 μg/ml and 100-200 μg/ml. Naik *et al.* (2015) studied against three Gram-positive (*Staphylococcus aureus*, *Bacillus coagulans*, *B. subtilis*) and three Gram-negative (*Escherichia coli*, *Pseudomonas aeruginosa* and *Salmonella typhi*) bacteria. The leaf extract caused high inhibition of *B. coagulans* followed by *B. subtilis* and the least inhibition caused by leaf extract was recorded against *S. aureus*. In the case of flower extract, *S. typhi* and *B. coagulans* were inhibited to a higher extent when compared to other bacteria. Antifungal activity was studied by poisoned food technique against test fungi namely *Bipolaris sorokiniana* (from root rot of wheat), *Fusarium oxysporum f.sp. zingiberi* (from rhizome rot of ginger), *Colletotrichum capsici* (from anthracnose of chilli) and *Curvularia sp.* (from mouldy grains of sorghum) and the results revealed that *F. oxysporum* displayed higher susceptibility to leaf and flower extracts followed by *Curvularia sp.*, *B. sorokiniana* and *C. capsici*. Umamaheshwari and Murthy (2012) studied against *Bacillus subtilis*, five different antibiotics namely Ciprofloxacin, Nitrofurantoin, Ofloxacin, Pefloxacin and Sparfloxacin were used as standard, results showed that the root extracts exhibited different degrees of antibacterial activity of which butanol extract of inhibition zone (2.4 cm) and ether extract (2.0 cm) showed maximum activity.

Antioxidant activity

The free radical scavenging activity of methanolic root extracts of *A. acuminata* was tested by Hadem *et al.* (2016) by DPPH method and, found significant value as compared to standard compound ascorbic acid. At 1000 μg/ml concentration, aqueous stem extract of *A. indica* showed higher scavenging activity of 66.66±4.67% compared to chloroform leaf extract of 48.33±3.38% in DPPH method (Subramaniyan *et al.*, 2015). Naik *et al.* (2015) found the ethyl alcohol extracts of leaves and flowers of *A. indica* at 100µg/ml concentration showed 48.68% and 10.52% DPPH radical scavenging activity respectively where ascorbic acid was used as standard. The aerial parts of *A. indica* exhibited IC50 value of 7.325 μg/ml at 25 μg/ml concentration when tested by DPPH radical scavenging method using ascorbic acid as standard and IC50 value of 8.498 μg/ml at 10 μg/ml concentration when tested by superoxide anion radical scavenging method with curcumin as standard (Karan *et al.*, 2012). Thiruignanasampandan *et al.* (2008) studied the antioxidant activities of both *A. acuminata* and *A. indica* using three solvents e.g., petroleum ether, chloroform and ethyl acetate extract. Among the extracts, the highest reducing power activity has shown by the ethyl acetate extract of *A. acuminata* (1.28%) and *A. indica* (1.01%). In Ammonium thiocyanate assay, petroleum ether (10 ml) extract of *A. acuminata* showed the highest activity of 57.42% and *A. indica* ethyl acetate extract showed the highest activity of 40.21% compared to Linoleic acid.
Anti-inflammatory activity

Ethyl acetate and ethanol extracts of *A. acuminata* roots at doses 200 and 400 mg/kg produced a significant reduction in the Carrageenan-induced paw edema on Wistar albino rats. The test samples exhibited an inhibitory effect for both COX and LOX enzymes, in vitro MTT colorimetric assay. Among the isolated phytoconstituents from the plant “Kaempferol” was responsible for the highest inhibition of PGE2 and LTB4 at 87.7% and 91.4% released from calcium ionophore and LPS IFN γ-stimulated macrophages than standard drug indomethacin (Battu *et al*., 2011). Aristolactam I and (-) Hinokinin isolated from *A. indica* also exerted anti-inflammatory effects and inhibited the production of IL-6 and cytokines TNF-α in LPS-stimulated THP-1 cells (Desai *et al*., 2014). Retardation of inflammation has resulted when combined administration of *A. indica* plant extract and venom Icthyocrinotoxin administered on Carrageenan induced male albino rats (Das *et al*., 2010). Ethanolic extract of *A. indica* roots at dose 150 mg/kg showed a potent anti-inflammatory effect on compound 48/80 induced paw edema in Wistar male albino rats (Mathew *et al*., 2011).

Anti-cancer activity

Hepatocellular carcinoma (HCC) in Swiss albino BALB/c mice was induced by carcinogen diethylnitrosamine (DEN) which elevates aspartate transaminases, alanine transaminase, alkaline phosphatase activities. *A. acuminata* root extract significantly attenuated the increased activities of these marker enzymes (Hadem *et al*., 2014). It was found the root extracts had lowered the levels of tumour necrosis factor-α (TNF-α) levels and nuclear factor kappa-B (NF-κB) activation when analysed the serum and nuclear extracts of DEN induced hepatocellular carcinoma in Albino BALB/c mice. Leaves and stem extracts of this plant also showed chemo-preventive potentiality when tested against six human cancer cell lines (Garg *et al*., 2007). Fractions of *A. acuminata* root aqueous-methanol extract of 2.5-5mg/ml concentration exhibited the highest inhibition with IC$_{50}$ value of 0.320 mg/ml and induced the effective apoptotic activity determined by MTT assay in HeLa cells (Hadem *et al*., 2019).

The chloroform leaves extract of *A. indica* showed an inhibitory effect at IC$_{50}$ value at 347 µg/ml compared to the standard anti-cancer therapy drug Taxol when evaluated in human breast cancer cell line (MCF-7 Michigan Cancer Foundation-7) by MTT assay (Subramaniyan *et al*., 2015).

Anti-diabetic activity

The experimental findings of Karan *et al*. (2012) confirmed the aerial parts of *A. indica* possess significant anti-diabetic properties. A single intravenous injection of aqueous alloxan monohydrate (150 mg/kg) induced diabetes mellitus in Swiss albino mice and Glibenclamide considered as standard drug resulted that after four hours of the administration of chloroform plant extract showed maximum reduction in serum glucose level at the doses of (100, 250, 500, 750 mg/kg, p.o) from 226.3±4.502 to 198.7±2.16 mg/dl, 244.2±3.76 to 206.5±1.871 mg/dl, 414.2±3.869 to 187.2±2.312 and 273±3.742 to 184.7±3.141 mg/dl. Methanolic extracts of *A. indica* roots at doses 100, 200 and 400 mg/kg showed anti-hyperglycemic effect on alloxan induced diabetic mellitus in Sprague Dawley rats and compared with the oral hypoglycemic agent glibenclamide (10 mg/kg). The effect of crude extract on blood glucose levels was measured at various time intervals of 0, 1, 2, 4, 6 and 8 hours. The dose of 400 mg/kg of the crude extract produced a significant maximum fall of 28.94 ± 2.8 on the blood glucose levels of diabetic rats after 6 hours of the treatment compared with disease control group (Goverdhan *et al*., 2008).

Anti-fertility activity

The anti-fertility activity was evaluated by determining the anti-implantation and early abortifacient activity of ethanolic extract of *A. acuminata* leaves in Wistar rats of either sex orally at the doses of 100 and 200 mg/kg considering 1% Tween 80 as control drug showed significant (100%) antifertility activity on 200 mg/kg in female rats by a significant reduction in the number of corpora lutea and increase in the number of...
resorptions (Balaji et al., 2004). The post-coital administration of *A. indica* ethanolic root extract decreased fertility in both Wistar rats and hamsters (Che et al., 1984).

Anti-venom activity

Screening of *A. indica* plant extract against snake (*Daboia russelli*) venom (Menatchisundaram et al., 2009) and scorpion (*Mesobuthus tamulus*) venom (Attarde and Apte, 2013) showed potent venom neutralizing capacity. 0.11 mg of plant extracts were able to completely inhibit PLA2 dependent haemolysis of sheep RBC’s induced by *D. russelli* venom and 4 mg of plant extracts were able to completely inhibit PLA2 dependent haemolysis of mice RBC’s induced by red scorpion venom in dose dependent manner. The plant extract of *A. indica* is effective in neutralization of lethal venom effects of 2LD50 of *D. russelli* venom and LD99 of *M. tamulus* (red scorpion) venom. Additionally, the pro-coagulant activity showed 1.6 mg and 1 mg of plant extracts were able to completely neutralize coagulant activity in *D. russelli* venom and red scorpion venom clotted human citrated plasma. The modified plaque assay was used to test the fibrinolytic activity, showed 0.11 mg of plant extract was able to completely inhibit fibrinolytic activity (ED50 of 0.5 mg) induced by *D. russelli* venom. The popular bioactive compound of this plant such as Aristolochic acid, Sesquiterpenes, Aristololide works in the modification of the actions of proteins and enzymes which are responsible for the anti-scorpion venom property.

Anti-diarrhoeal activity

The anti-diarrhoeal activity of *A. indica* ethanol and aqueous root extract tested in castor oil-induced diarrhoea male Swiss albino mice resulted the inhibition of 72.38% and 61.94% at a higher dose level 400 mg/kg as compared with diphenoxylate HCl. A delay of the intestinal transit in charcoal meal-induced mice was recorded at the doses of 200 mg/kg and 400 mg/kg of plant extract confirmed the significant result in charcoal induced gastrointestinal motility test (Dharmalingama et al., 2014).

Anti-pruritic activity

Compound 48/80 induced scratched behaviour model was used to evaluate the scratching response of *A. indica* root. The ethanolic plant extract at the dose of 150 mg/kg showed significant effect and decreased the scratching incidence (Mathew et al., 2011). The wound healing potency *A. saccata* leaf extract was studied by Bolla et al. (2019). *In vitro* cell-based scratch assay in L929 cells resulted after 48 hours of treatment with 125 μg/mL of plant extract closed the gap created by the scratch by 93.525%. The extracellular matrix (ECM) factor, collagen type-1 might be enhanced by the plant extract which initiated the migration of fibroblasts (Bolla et al., 2019).

Anti-feedant activity

Antifeedant activity studied by Baskar et al. (2011) reported the leaf extract of *A. acuminata* was more toxic than the root extract. Maximum anti-feedant activities of 56.06% and 49.86% were recorded on ethyl acetate and hexane leaf extracts of *A. acuminata* at 5.0% concentration against *Spodoptera litura* using leaf disc no-choice method while the root ethyl acetate extract expressed minimum activity of 31.71%. At the same concentration, the ethyl acetate leaf extract exhibited the highest larvicidal activity (40.66%) and pupicidal activity (68.06%). Significant larval toxicity showed by *A. indica* leaf against *Arophenes stephensi*. The formulation of Aristolochic acid I at concentrations of 1000 ppm reduced the survival of all larval instars (Murugan et al., 2015; Pradeepa et al., 2015).

Toxicology

The aristolochic acids found among the species of *Aristolochia* are famous for nephrotoxicity after the tragic Belgian cohort where the women have taken the weight reducing pills contained Chinese herb, *Stephania tetrandra* was inadvertently replaced by aristolochic acid-containing *A. fangchi* were reported to suffering renal
interstitial fibrosis (Balachandran et al., 2005; Debelle et al., 2008). The nephrotoxic and carcinogenic properties of the compound aristolochic acids have been recognised and can cause permanent kidney injury, renal failure (Han et al., 2019). The toxicological risk on the consumption of drugs made up of *A. indica* depends upon several factors like processing, preparation of drugs and mode of administration (Michl et al., 2013). In the quality control of the herbal recipe Homnawakod, Tripatara et al. (2012) demonstrated that one of its formulations e.g., the dried roots of *A. acuminata* were not causing nephrotoxicity in rats even the daily administration for 21 days. The acute toxicity study revealed no cytotoxic effects of *A. acuminata* leaves and root, *A. indica* aerial parts and roots when tested in both Swiss albino mice and Wistar albino rats (Balaji et al., 2004; Battu et al., 2011; Mathew et al., 2011; Karan et al., 2012). Leaves of *A. saccata* exhibited mild toxicity against L929 fibroblast cell line at minimum percentage resulted in the death of only 2.88% of cells (Bolla et al., 2019). Michl et al. (2013) also reported the contents of Aristolochic acid is higher in leaves, fruits and young stem than roots and woody stems.

Conservation status of Aristolochia at the local level

Mostly the roots of the *Aristolochia* sp. are used for a different form of traditional medicine, which arise a problem, as most plants are uprooted directly from the wild before reaching reproductive maturity. This poses a serious threat and is also elucidated by Kayang (2007). However, effective planning on cultivation and management of *Aristolochia* on a small scale can help address this issue, as well as introduction in the home gardens can solve this problem. They can also be planted as beautiful ornamental. The attractive flowers add aesthetic value to its present traditional utilities.

Conclusions

The plants of the genus *Aristolochia* have always been recognized as plants of high medicinal importance by the people of Northeast India. But in recent years, the genus *Aristolochia* L. has been recognized globally for possessing remarkable medicinal value and is reportedly used by people throughout the Indian sub-continent against various diseases and illnesses such as snake bites, muscular ailments, lung, liver and gastrointestinal disorders etc. Hence, in this present study, we have comprehensively reviewed the traditional knowledge on six species of *Aristolochia* found in the northeastern state of Assam along with the various phytoconstituents present in those species. Also, the various properties viz. antimicrobial, antioxidant, anti-inflammatory, anticancer, anti-diabetic, anti-fertility, anti-venom, anti-diarrhoeal, anti-pruritic, antifeedant and toxic activity exhibited by various parts of the plant. In short, this review is designed to provide insight into the necessity of further research of important plant compounds to investigate and develop new drugs. Additionally, more comprehensive reviews regarding the activity of the compounds found in *Aristolochia* will help in further development of using *Aristolochia* as an effective drug. Hopefully, these studies will explore the full potential of *Aristolochia* and optimize its use as a promising herbal medicine, thereby promoting global health.

Authors’ Contributions

Conceptualization: DB; Data Curation: DB, PJB; Formal analysis: DB, RS; Writing original draft: PB; Writing-review and editing: UD, TJD.

All authors read and approved the final manuscript.
Acknowledgements

The authors are thankful to Mr. Khyanjeet Gogoi and Mr. Goutam Panda for their pictures of *A. platanifolia* and *A. indica*.

Conflict of Interests

The authors declare that there are no conflicts of interest related to this article.

References

Bhattacharjee S, Banerjee A, Manna CK (2016). Role of some ethno medicines used by the Santal tribal people, of the district Bankura, W.B., India, for abortifacient purposes. Journal of Medicinal Plants Studies 4:125-129.

