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Abstract 

 

The responses of oregano plants to water limitation from soil and seasonal phenological cycle are not 
fully understood yet. The aim of the present research was to help understanding the production of oregano 
essential oil and biomass facing soil water deficit, which was studied in different seasons. Oregano was 
subjected to drip irrigation, the water deficit being assessed in the vegetative and pre-flowering stages, as well 
as whole cycle analysis, through water matric potentials in the soil. The matric potential -60.8 kPa adopted in 
the irrigation handling during the oregano cultivation interval, led to higher essential oil content and yield. 
The same potential applied during the oregano pre-flowering stage resulted in the best mean of oregano fresh 
biomass production. The best dry biomass production was reached by using the matric potential -91.2 kPa in 
the oregano pre-flowering irrigation management. Water restriction in the soil throughout the entire 
phenological cycle favoured essential oil production, whereas the water restriction during the pre-flowering 
stage enabled high oregano dry biomass production. The highest values for biomass and essential oil 
productions were reached for the oregano plants cultivated during spring/summer. 
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Introduction 

 
Oregano (Origanum vulgare L.) is an agronomic species of great productive potential worldwide due to 

its extensive eco-physiological amplitude (Landi and Guidi, 2015). This allogamous herbaceous angiosperm 
plant, besides its use as spice, has medicinal potential and presents C3 physiological mechanism. It belongs to 
family Lamiaceae and originally comes from the North-eastern coast of the Mediterranean Sea (Lukas et al., 

2010; Dardioti et al., 2012; Bafana 2013; Raut and Karuppayil 2014; Do et al., 2015). This spice is mostly 
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used in pasta recipes and is one of the main medicinal and spice plants grown in Germany and Argentina 
(Torres et al., 2012; Honermeier et al., 2013; Paraskevakis 2015). Oregano products have high added value, 

one kilogram of this spice costs € 180.00, on average and one kilogram of its essential oil may cost € 6,000 (Do 
et al., 2015). 

Studies carried out since the early twenty-first century have shown that the oregano essential oil 
inhibits the growth of pathogenic microorganisms, such as Salmonella choleraesius, in the food (Souza et al., 

2006), as well as of Aspergillus flavus, which contaminates table grapes at the postharvest stage (Sivakumar 

and Bautista-Bãnos, 2014). This oil also has nematicide effect against Meloidogyne incognita (Trivellini et al., 

2016). On the other hand, the oregano extract has medicinal properties against breast and colon cancer cells 
(Savini et al., 2009; Guvenalp et al., 2010), as well as against the yellow fever causative agent (Meneses et al., 

2009) and against diabetes mellitus (Lemhadri et al., 2004). 

The main goal of irrigation in agriculture is to supply plants, mainly seasoning plants grown in 
protected environments, with water at the proper time and amount. Water content changes in the soil may 
affect the plant’s vegetative growth and lead to decreased biomass and essential oil quality and productivity 
(Guidi and Landi, 2014). Innovative irrigation management techniques are acknowledged nowadays due to 
the current perspective about efficient water use. One of these techniques concerns the irrigation 
management based on using the water deficit, which is possible by monitoring the water content in the soil 
through the matric potential and the soil water dielectric constant (Whalley et al., 2013; Létourneau et al., 

2015).   
The water deficit in the soil may be directly monitored through time domain reflectometry (TDR). 

The soil water dielectric constant is measured through the TDR calibration equation, which is applied to 
determine the volumetric soil moisture. This constant allows finding the soil water matric potential expressed 
by the soil water retention curve, which is calculated through the van Genuchten equation. Such procedure 
quantifies the irrigation to be applied in agricultural cultivation (Bahreininejad et al., 2013; Batista et al., 

2013; Gomes et al., 2014). 

Oregano plants have been the core topic of scientific investigations in the plant nutrition and drug 
synthesis field, since they grow in places lacking rainfall in summer; however, studies about the response of 
these plants to water deficit are not found in the literature. There is evidence that this seasoning species is able 
to support high water deficit levels in the soil. Therefore, the aim of the present study was to investigate the 
biomass production and essential oil biosynthesis responses under different water availability conditions in 
order to set the optimum water matric potential for oregano irrigation handling and establish the best season 
to produce essential oil and biomass of Origanum vulgare L. 

 
 
Materials and Methods 

 
Experimental tests 

Two experiments were conducted in a protected environment of the Biosystems Engineering 
Department, at University of São Paulo (USP), Piracicaba County - São Paulo State, Brazil (22°42’ S; 47°37’ 
W; altitude 550 m). An arch-type greenhouse (7.0 m wide, 22.5 m long and 3.0 m high) was used to 
implement the experiments. The first experiment was conducted between November 6th, 2014 and February 
9th, 2015 (spring/summer). The second one was conducted between May 14th, 2015 and August 17th, 2015 
(autumn/winter). 

The experiments followed the factorial randomized block design, with additional treatment (Healy, 
1956). The factorial design consisted of four soil water matric potentials (-60.8; -91.2; -121.2 and -152.0 kPa) 
adopted as soil irrigation management reference, which was applied in three different cultivation stages 
(whole cycle, vegetative stage and pre-flowering stage) (Matraka et al., 2010; Chauhan et al., 2013). The 
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control treatment (-19.7 kPa) was run throughout the oregano cultivation cycle, because its matric potential 
corresponded to the field capacity of the soil. The cultivation stages were defined as follows: whole cycle, 
which lasted from seedling transplantation to harvesting; vegetative stage, from seedling transplantation to 
the emergence of the first floral branch; pre-flowering stage, from floral branch emission to full flower-
opening (Davidenco et al., 2015). 

Each treatment consisted of six repetitions, thus totaling 78 plots. Each plot corresponded to a 12-liter 
conical trunk-shaped pot containing one Origanum vulgare L. plant. 

 
Irrigation planning and management 

The water content in the soil was monitored through time domain reflectometry (Field Scout TDR 
100). The equipment was calibrated by using the soil water dielectric constant (ka) before conducting the 
experiments under volumetric soil moisture conditions (Gomes et al., 2014). A soil sample was removed from 

the pot after each ka reading; an auger screw was used to determine the volumetric water content (Uhland, 
1951). Non-deformed soil samples were collected from the pots subjected to TDR calibrations, which were 
conducted to generate the soil water retention curves (van Genutchen, 1980). The soil used in the 
experiments is classified as Latossolo Vermelho eutrofico tipico, in Brazil, (Embrapa, 2013) and as Typic 
Hapludox, in the United States (Soil Survey Staff, 1999).  

A trickle irrigation system, whose drip emitters presented 2 L h-1 nominal flow rate (Naan Daan Jain 
Taper lock outlet 2.0 kgf cm-2) was adopted. The lateral and derivation lines were composed of polyethylene 
hose (13 mm nominal diameter - ND) - the main line of the system was installed using a 19-mm-ND 
polyvinyl chloride pipe (PVC). Ball valves were installed at the beginning of each derivation line to 
independently irrigate the treatments. The volumetric moisture spatial variability in the plots was minimized 
by using a pair of microtubes (4 mm internal diameter) coupled to each dripper. The plant grew between a 
pair of water emission points (Batista et al., 2013). 

Irrigation was performed when the water content in the plots reached volumetric moisture 
corresponding to the matric potential of the treatment. It was done in order to enable the soil to achieve its 
field capacity, at the end of the irrigation event. Daily readings of the water dielectric constant in the soil (ka) 
were carried out during the experiments (Xu et al., 2007). Handheld probes were vertically inserted into the 

pots down to the last soil layer (0.20 m depth). 
All treatments were kept in soil water matric potential -19.7 kPa (field capacity) throughout the first 

two cultivation weeks in order to assure seedling acclimation and to standardize the volumetric soil moisture 
conditions. The irrigation management under water deficit conditions was performed fifteen days after 
seedling transplantation (Bekhradi et al., 2015). 

The herein found ka values allowed obtaining the current volumetric soil moisture value (Equation 1). 
The soil water matric potential was calculated through Equation 2 (van Genutchen 1980) by using the 
volumetric soil moisture value, which was determined through the adoption of the independent variable 
TDR. The irrigation time was calculated through Equation 3 (Bahreininejad et al., 2013).  

 
 
wherein: 
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θcurrent = current volumetric soil moisture, cm3 cm-3; 
ka = soil water dielectric constant, dimensionless;  

Ѱm = current soil water matric potential |kPa|; 
θfC = volumetric soil moisture at field capacity, cm3 cm-3;  
Def = effective root depth, mm; 
Ti = Irrigation time, hours; 
A = pot surface area, m2;  
Ea = irrigation system application efficiency, %; and 
Qactual = actual emitter flow set through the uniformity and flow tests, L h-1. 
 
Oregano plant cultivation 

The oregano seedlings were transplanted at the 33rd-day of life. The meteorological variables (air 
temperature and relative humidity) were measured every one hour and monitored throughout the whole 
experiment. These variables were recorded in an automatic thermo-hygrograph using a data logger (HT 4000 
Hiseg model) located in the center of the greenhouse, according to the methodology of Batista et al. (2013). 

The harvesting was performed 96 days after seedling transplantation. Leaves and inflorescences were 
individually subjected to manual collection, packaged in kraft paper bags and dried in forced ventilation oven, 
at 40 °C, for 96 hours (Economakis, 1993). The biomass was weighed in analytical scale, before and after 
drying, to measure shoot fresh and dry weight, respectively. 

The oregano essential oil was extracted through steam hydro-distillation (Clevenger, 1928; Voltolina, 
2017). Dry shoot biomass was added to 1,500 ml of distilled water and the mixture was placed in a 2-liter 
volumetric flask. Subsequently, the mixture was heated in thermal blanket at 100 °C, for 90 minutes (Asensio 
et al., 2015). The obtained essential oil mass was measured after the oil was extracted; the remaining water 

was decanted at 4 °C for 48 hours (Busatta et al., 2007). The essential oil content was set by the extracted oil 

mass/shoot dry mass ratio (El Gendy et al., 2015; Voltolina, 2017). 

 
Statistical analysis 

Analysis of variance (ANOVA) were performed to assess biomass and essential oil data, at 5% 
significance level. In case of significant effects, LSD test was performed to compare the different mean soil 
water matric potentials and the three phenological stages assessed in the R software (Breusch and Pagan, 
1979; Box et al., 2005; R Development Core Team, 2013). 

 
Results  

 
Biomass production 

The statistical interaction between the soil water matric potential and the oregano phenological stages 
(p < 0.01) was checked and the best mean biomass production was not found based on the lower or higher 
matric potentials assessed in the current study. Plants subjected to hydric limitation in all phenological stages 
of the first experiment, recorded the highest mean fresh biomass (p < 0.05) at matric potential higher than -
100 kPa, with emphasis to the means recorded in the pre-flowering stage (Table 1). The second experiment 
recorded the best means in plants subjected to hydric limitation during the pre-flowering (matric potential 
higher than -100 kPa) and vegetative stages (matric potential higher than -65 kPa) (p < 0.01) (Table 1). 

The highest mean dry biomasses were recorded by plants cultivated under water deficit in 
spring/summer (Experiment 1) and treated with matric potential -91.2 kPa in the pre-flowering stage (p < 
0.01) (Table 2). The dry biomass from the fall/winter cultivation (Experiment 2) showed significant 
difference in the oregano phenological stage (p < 0.05); the means of plants facing water restriction in the 
pre-flowering stage (Table 2) were 22% higher than those of other plants. 
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The control plants grown in spring/summer (Experiment 1) showed statistical fresh and dry weight 
mean and standard error 70.32 ± 4.59 and 16.17 ± 1.13 grams, respectively. These means were statistically 
different (p < 0.05) from the mean values shown by plants grown under water limitation. The experiment 
carried out in the autumn/winter season did not show mean dry and fresh mass differences between the 
control and water deficit treatments (p > 0.05). The control plants showed mean fresh weight 46.11 ± 5.99 
grams and mean dry matter 14.99 ± 2.09 grams. 

The experiments conducted with plants cultivated in soil facing restricted water availability in the 
phenological pre-flowering stage, at matric potential -91.2 kPa, recorded the best mean dry biomass. The 
experiments conducted with plants cultivated in soil facing restricted water availability in the phenological 
pre-flowering stage and matric potential -60,8 kPa have presented the best mean fresh biomass. The season 
presenting the bests means was spring/summer (p<0.05 - fresh biomass; p<0.05 - dry biomass) (Tables 3 and 
4). 

 
Table 1. Origanum vulgare L. fresh biomass production within the experiments 

Phenological atage 
Matric potential (-kPa) 

Mean 
60.8 91.2 121.6 152.0 

Experiment 1 (spring/summer - 11/6th/2014 to 02/9th/2015) 

Pre-flowering 67.51 ± 4.99 A a 64.62 ± 4.04 A a 56.88 ± 3.85 B a 55.41 ± 1.84 B a 60.42 ± 3.52 

Whole cycle 61.05 ± 1.14 A a 62.14 ± 1.09 A a 6.79 ± 0.10 B b 6.44 ± 0.28 B b 34.13 ± 0.40 

Vegetative stage 62.18 ± 2.35 A a 61.88 ± 2.92 A a 6.88 ± 0.33 B b 6.26 ± 0.30 B b 34.96 ± 2.32 

Mean 63.58 ± 2.83 62.88 ± 2.76 23.52 ± 1.51 22.70 ± 0.87 43.17 ± 1.56 

Experiment 2 (autumn/winter - 05/14th/2015 to 08/17th/2015) 

Pre-flowering 46.34 ± 4.57 A a 44.03 ± 7.54 A a 35.93 ± 3.84 B a 34.00 ± 3.82 B a 40.08 ± 4.17 

Whole cycle 34.24 ± 4.15 A b 26.02 ± 4.99 B c 13.58 ± 1.61 C b 11.07 ± 1.15 C b 20.80 ± 2.75 

Vegetative stage 44.02 ± 1.05 A a 31.19 ± 4.00 B b 15.42 ± 5.33 C b 14.21 ± 1.41 C b 25.65 ± 3.05 

Mean 41.53 ± 3.26 33.75 ± 5.51 21.64 ± 4.01 19.79 ± 3.71 28.84 ± 3.51 

Note: Means (value ± standard error) followed by lowercase letters in the column (Phenological Stage) or capital 
letters on the line (Matric Potential) significantly differ from each other in the LSD Test (p<0.05) 

 

Table 2. Origanum vulgare L. dry biomass production within the experiments 

Phenological stage 
Matric potential (-kPa) 

Mean 
60.8 91.2 121.6 152.0 

Experiment 1 (spring/summer - 11/6th/2014 to 02/9th/2015) 

Pre-flowering 15.88±1.39 AB a 21.20 ± 0.83 A a 14.97±1.34 AB a 13.43 ± 0.34 B a 16.37 ± 0.58 

Whole cycle 15.02±0.36 B a 18.60 ± 0.64 A b 1.69 ± 0.05 C b 1.55 ± 0.11 C b 9.22 ± 1.09 

Vegetative stage 14.72±1.01 B a 15.37 ± 0.37 A c 1.81 ± 0.13 C b 1.79 ± 0.06 C b 8.42 ± 0.88 

Mean 15.21±0.57 18.39 ± 1.33 5.82 ± 1.41 5.59 ± 1.55 11.33 ± 0.55 

Experiment 2 (autumn/winter - 05/14th/2015 to 08/17th/2015) 

Pre-flowering 14.80 ± 0.89 15.66 ± 1.97 13.22 ± 1.11 16.36 ± 2.53 15.01 ± 0.90 a 

Whole cycle 12.14 ± 1.52 11.91 ± 1.19 11.87 ± 5.45 10.01 ± 1.46 11.48 ± 1.19 b 

Vegetative stage 12.59 ± 2.00 12.02 ± 0.94 12.13 ± 1.21 12.97 ± 2.50 12.43 ± 1.08 b 

Mean 13.18 ± 0.88 A 13.19 ± 0.89 A 12.40 ± 1.17 A 13.11 ± 1.06 A 12.95 ± 0.69 
Note: Means (value ± standard error) followed by lowercase letters in the column (Phenological Stage) or capital 
letters on the line (Matric Potential) significantly differ from each other in the LSD test  (p<0.05) 

 

Table 3. Season effect on each Origanum vulgare L. dry biomass treatment 

Dry biomass (g) 
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Phenological stage 
Matric 
potential 
(-kPa) 

Spring/summer Autumn/winter 

Mean 11/6th/2014 to 
02/9th/2015 

05/14th/2015 to 
08/17th/2015 

Whole cycle 

60.8 15.02 ± 0.36 A b 12,14 ± 0,89 B b 13.58 ± 0.58 

91.2 18.60± 0.64 A b 11.91 ± 1.19 B b c 15.26 ± 0.85 

121.2 1.69 ± 0.05 B d 11.87 ± 5.45 A b c 6.78 ± 2.56 

152 1.55 ± 0.11 B d 10.01 ± 1.46 A c 5.78 ± 0.73 

Vegetative stage 

60.8 14.72 ± 1.01 A b 12.59 ± 2.00 A a b 13.66 ± 1.40 

91.2 15.37 ± 0.37 A b 12.02 ± 0.94 B b 13.70 ± 0.61 

121.2 1.81 ± 0.13 B d 12.13 ± 1.21 A b 6.97 ± 0.62 

152 1.79 ± 0.06 B d 12.97 ± 2.50 A a b 7.38 ± 1.19 

Pre-flowering 

60.8 15.88 ± 1.39 A b 14.80 ± 0.89 A a 15.34 ± 1.06 

91.2 21.20 ± 0.83 A a 15.66 ± 1.97 B a 18.43 ± 1.30 

121.2 14.97 ± 1.34 A b 13.22 ± 1.11 B a b 14.10 ± 1.14 

152 13.43 ± 0.34 B b 16.36 ± 2.53 A a 14.90 ± 1.33 

Control 16.17 ± 1,13 A a b 14.99 ± 2.09 A a 15.58 ± 1.61 

Mean 11.71 ± 0.60 13.13 ± 1.86 12.42 ± 1.23 

Note: Means (value ± standard error) followed by capital letters on the line (seasonal season) and by lowercase letters 
in the column (treatments) significantly differ from each other in the LSD test (p<0.05) 

 
Table 4. Season effect on each Origanum vulgare L. fresh biomass treatment 

Fresh biomass (g) 

Phenological stage 
Matric 
Potential 
(-kPa) 

Spring/summer Autumn/winter 

Mean 11/06th/2014 to 
02/09th/2015 

05/14th/2015 to 
08/17th/2015 

Whole cycle 

60.8 61.05 ± 1.14 A b c 34.24 ± 4.15 B a 47.65 ± 2.63 

91.2 62.14 ± 1.09 A b c 26.02 ± 4.99 B d 44.08 ± 3.59 

121.2 6.79 ± 0.10 B d 11.87 ± 5.45 A f 9.33 ± 2.28 

152 6.44 ± 0.28 B d 11.07 ± 1.15 A f 8.76 ± 1.70 

Vegetative stage 

60.8 62.18 ± 2.35A b c 44.02 ± 1.05 B a 53.1 ± 3.79 

91.2 61.88 ± 2.92 A b c 31.19 ± 4.00 B c 46.54 ± 3.46 

121.2 6.88 ± 0.33 B d 15.42 ± 5.33 A e 11.15 ± 3.38 

152 6.26 ± 0.30 B d 11.97 ± 2.50 A f 9.12 ± 2.73 

Pre-flowering 

60.8 67.51 ± 4.99 A a b 46.34 ± 4.57 B a 56.93 ± 2.39 

91.2 64.62 ± 4.04 A a b 44.03 ± 7.54 B a 54.33 ± 5.01 

121.2 56.88 ± 3.85 A c 35.93 ± 3.84 B a 46.41 ± 2.98 

152 55.41 ± 1.84 A c 34.00 ± 3.82 B b 44.71 ± 2.17 

Control 70.32 ± 4.59 A a 46.11 ± 5.99 B a 58.22 ± 4.29 

Mean 45.26 ± 2.04 30.17 ± 4.78 37.71 ± 3.19 

Note: Means (value ± standard error) followed by capital letters on the line (seasonal season) and by lowercase letters 
in the column (treatments) significantly differ from each other in the LSD test (p<0.05) 

 

Essential oil biosynthesis 

The best mean essential oil content in both experiments was recorded by plants whose soil water 
matric potential was -60.8 kPa, during the whole cultivation cycle (Tables 5 and 6). Plants in Experiment 2 
(fall/winter), which were cultivated under water restriction in the pre-flowering stage and treated with matric 
potential higher than -125 kPa, presented mean essential oil content statistically equal to plants cultivated 
under soil water limitation throughout the whole phenological cycle, at matric potential -60.8 kPa (Table 5). 
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Similar result was recorded for essential oil yield; plants subjected to soil water limitation during the pre-
flowering stage, at matric potential -91.2 kPa, showed high mean essential oil yield (Table 6). 

Plants cultivated in soil with water matric potential between -90 kPa and -125 kPa, during the pre-
flowering stage in both experiments, presented essential oil means higher than those recorded in plants 
subjected to water restriction in the vegetative stage (Tables 5 and 6). Plants cultivated under water 
restriction in the vegetative stage or throughout the whole cultivation cycle, whose soil water matric potential 
for irrigation was lower than -100 kPa, did not produce essential oil. 

The highest essential oil yield and content indices were reached in Experiment 1, which was performed 
in the spring/summer season (p<0.01 - content; p<0.01 - yield) (Tables 7 and 8). 

 
Table 5. Origanum vulgare L. essential oil content within the experiments 

Matric potential  
(-kPa) 

Phenological stage 

Essential oil content (%) 

Mean 
Spring/summer Autumn/winter 

11/06th/2014 to 
02/09th/2015 

05/14th/2015 to 
08/17th/2015 

60.8 Whole cycle 3.080 ± 0.074 a 0.243 ± 0.180 a 1,661 ± 0,641 

60.8 Vegetative stage 0.420 ± 0.021 d 0.120 ± 0.014 c 0,270 ± 0,103 

60.8 Pre-flowering 0.536 ± 0.036 c 0.146 ± 0.006 b c 0,341 ± 0,093 

91.2 Vegetative stage 0.130 ± 0.015 e 0.173 ± 0.019 b c 0,152 ± 0,014 

91.2 Pre-flowering 0.623 ± 0.050 c 0.241 ± 0.065 a 0,431 ± 0,093 

121.2 Pre-flowering 0.603 ± 0.030 c 0.240 ± 0.021 a 0,422 ± 0,071 

152.0 Pre-flowering 0.580 ± 0.049 c 0.150 ± 0.068 b c 0,365 ± 0,081 

Control 0.843 ± 0.090 b 0.190 ± 0.059 b 0,516 ± 0,154 

Mean 0.852 ± 0.180 0.189 ± 0.024 0.520 ± 0.102 

P-value < 0.002 < 0.009 - 

Note: Mean (value ± standard error) followed by lowercase letters in the column significantly differ from 
each other in the LSD test (p<0.05) 

 
Table 6. Origanum vulgare L. essential oil yield within the experiments 

Matric potential  
(-kPa) 

Phenological stage 

essential oil yield (mg plant-1) 

Mean Spring/summer Autumn/winter 

11/06th/2014 to 
02/09th/2015 

05/14th/2015 to 
08/17th/2015 

60.8 Whole cycle 26.25 ± 5.94 a 3.12 ± 1.37 a 14.71 ± 3.55 

60.8 Vegetative stage 7.88 ± 0.48 c d 1.48 ± 0.28 d e 4.71 ± 1.00 

60.8 Pre-flowering 6.68 ± 1.18 d 2.10 ± 0.22 c d 4.26 ± 0.81 

91.2 Vegetative stage 2.74 ± 0.42 e 2.00 ± 0.26 c d e 2.39 ± 0.14 

91.2 Pre-flowering 9.41 ± 1.46 c 2.76 ± 0.42 a b 6.10 ± 1.03 

121.2 Pre-flowering 8.07 ± 2.40 c d 2.31 ± 0.13 b c d 5.19 ± 1.11 

152.0 Pre-flowering 8.04 ± 1.34 c d 2.10 ± 0.35 c d 5.07 ± 0.82 

Control 14.04 ± 0.86 b 2.69 ± 0.38 b 8.39 ± 1.76 

Mean 10.38 ± 1.84 2.32 ± 0.28 6.35 ± 1.07 

P-value < 0.009 < 0.0004 - 

Note: Means (value ± standard error) followed by lowercase letters in the column significantly differ from each other 
in the LSD test (p<0.05) 
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Table 7. Season effects on the content of Origanum vulgare L. essential oil  

Matric potential 
(-kPa) 

Phenological stage 

Essential oil content (%) 

Mean 
Spring/summer Autumn/winter 

11/06th/2014 to 
02/09th/2015 

05/14th/2015 to 
08/17th/2015 

60.8 Whole cycle 3.080 ± 0.074 A a 0.243 ± 0.180 B a 1,661 ± 0,641 

60.8 Vegetative stage 0.420 ± 0.021 A d 0.120 ± 0.014 B a 0,270 ± 0,103 

60.8 Pre-flowering 0.536 ± 0.036 A c d 0.146 ± 0.006 B a 0,341 ± 0,093 

91.2 Vegetative stage 0.130 ± 0.015 A e 0.173 ± 0.019 A a 0,152 ± 0,014 

91.2 Pre-flowering 0.623 ± 0.050 A c 0.241 ± 0.065 B a 0,431 ± 0,093 

121.2 Pre-flowering 0.603 ± 0.030 A c 0.240 ± 0.021 B a 0,422 ± 0,071 

152.0 Pre-flowering 0.580 ± 0.049 A c d 0.150 ± 0.068 B a 0,365 ± 0,081 

Control 0.843 ± 0.090 A b 0.190 ± 0.059 B a 0,516 ± 0,154 

Mean 0.852 ± 0.180 0.189 ± 0.024 0.520 ± 0.102 

Note: Means (value ± standard error) followed by capital letters on the line (seasonal period) and 
lowercase letters in the columns (treatments) significantly differed from each other in the LSD test 
(p<0.05) 

 
Table 8. Season effect on the yield of Origanum vulgare L. essential oil  

Matric potential 
(-kPa) 

Phenological stage 

Essential oil yield (mg plant-1) 

Mean 
Spring/summer Autumn/winter 

11/06th/2014 to 
02/09th/2015 

05/14th/2015 to 
08/17th/2015 

60.8 Whole cycle 26.25 ± 5.94 A a 3.12 ± 1.37 B a 14.71 ± 3.55 

60.8 Vegetative stage 7.88 ± 0.48 A d e 1.48 ± 0.28 B e 4.71 ± 1.00 

60.8 Pre-flowering 6.68 ± 1.18 A e 2.10 ± 0.22 B c d 4.26 ± 0.81 

91.2 Vegetative stage 2.74 ± 0.42 A f 2.00 ± 0.26 B d 2.39 ± 0.14 

91.2 Pre-flowering 9.41 ± 1.46 A c 2.76 ± 0.42 B d 6.10 ± 1.03 

121.2 Pre-flowering 8.07 ± 2.40 A c d 2.31 ± 0.13 B c 5.19 ± 1.11 

152.0 Pre-flowering 8.04 ± 1.34 A c d 2.10 ± 0.35 B c d 5.07 ± 0.82 

Control 14.04 ± 0.86 A b 2.69 ± 0.38 B d 8.39 ± 1.76 

Mean 10.38 ± 1.84 2.32 ± 0.28 6.35 ± 1.07 
Note: Means (value ± standard error) followed by capital letters on the line (seasonal period) and by lowercase letters 
in the columns (treatments) significantly differed from each other in the LSD test (p<0.01) 

 
 
Discussion 

 
Biomass production 

The highest mean biomasses shown by plants subjected to soil water restriction did not result from the 
lowest or highest matric potentials assessed in the current study. The irrigation frequency based on different 
matric potentials enabled a wet and dry cycle that has positively influenced the nutrients, microbial fauna and 
root dynamics in the soil. Thus, the hormonal signaling from roots to shoots, as well as the organic matter 
mineralization and nutrient uptake, were positively potentiated (Dodd et al., 2015). 

According to Du et al. (2015), the water deficit effects depend on the phenological stage, as well as on 

deficit duration and severity. A study conducted by Azizi et al. (2009) in Rauischholzhausen (Germany) 

investigated the soil water limitation effects on oregano plant production. They found that plants subjected 
to water deficit in the pre-flowering stage presented the highest mean biomasses. The study conducted by 
Baher et al. (2002) in Tehran (Iran) showed that Satureja hortensis L. subjected to water deficit in the pre-

flowering stage recorded the best fresh and dry biomass production. Therefore, the irrigation handling 
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focused on maintaining the water content in the soil at field capacity level, during the vegetative stage, makes 
roots and leaves save bioenergetical reserves to resist the water limitation (Osakabe et al., 2014). 

One of the main plant physiological responses to soil water restriction lies on adjustments in biomass 
accumulation to end the phenological cycle. In other words, plants adjust their source-sink relation when they 
face environmental adversities; so, the energy expenditure can be minimized due to water absorption and the 
nutrient allocation in their structure can meet the suitable biochemical and physiological processes. In 
addition, plants may stiffen their cell wall to keep the turgor pressure and reduce the water losses caused by 
transpiration (Neumann, 1995; Shao et al., 2008). 

The decreased emission of leaves and the reduced stomata opening frequency minimize water losses 
caused by evapotranspiration, and they are other examples of plant adaptation to soil water limitation. This 
process minimizes CO2 absorption; thus, mass accumulation reaches lower rates than those of plants that 
were not subjected to water-scarce environments (Chaves and Oliveira, 2004; Farooq et al., 2009; 

Seghatoleslami et al., 2015). 

Khalil and El-Noemani (2015) assessed oregano plant growth based on different water depletion 
factors in Cairo, Egypt and found that plants whose irrigation depletion factor reference was 0.55, showed the 
highest mean fresh and dry biomasses. According to them, the combination of deficit irrigation and other 
cultural practices may promote biomass gain. Said-Al Ahl et al. (2009) assessed the response of oregano plants 

to different soil water depletion factors in Dokki (Egypt) and found that plants subjected to irrigation 
handling able to keep the water capacity of the soil in 80% showed the highest mean fresh and dry biomasses. 
They concluded that the irrigation applied to water deficit cases may improve the oregano fresh weight 
production rates.  

The plants grown under irrigation deficit throughout the cultivation cycle and those grown under 
water deficit in the vegetative stage, at soil water matric potential higher than -100 kPa, showed the highest 
mean fresh biomasses in the warmest season of the year - when the mean maximum and minimum 
temperatures reached 39.1 °C ± 4.0 °C and 20.2 ± 2.3 °C, respectively. The mean relative humidity was 
58.7% ± 5.6%. Although the mean maximum temperature did not meet the temperature range required for 
oregano cultivation (20-35 °C) (Mijani et al., 2013), the culture showed high yield under spring and summer 

environmental conditions, because they  activate the plant’s secondary metabolic pathways, which are more 
efficient at this time of the year (Figueiredo et al., 2008). 

According to Rioba et al. (2015), flavoring plants grown in different seasons show different responses. 

Ekren et al. (2012) conducted a study in Bornova,Turkey and found that the highest mean basil fresh and dry 

weights were recorded in the spring/summer season. According to them, the increased air temperature led to 
basil biomass gain. 

Telci and Hisil (2008) found that coriander presents higher biomass production in spring, because the 
high temperatures stimulate leaf emission and enable greater light absorption. Farahani et al. (2009) assessed 

the performance of flavoring plants under water scarcity conditions in different seasons and found that the 
mass accumulation increased depending on the increased photoperiod and on the environmental 
temperature. 

Kofidis et al. (2003) assessed the morphology and anatomy of oregano plants grown in different 

locations and seasons (in Greece) and found that plants grown in the spring/summer season recorded the 
highest mean biomass. They also found that these plants produced thick epidermis and mesophyll in the 
leaves when they met the evapotranspirometric demand of the season; therefore, water storage by leaves has 
helped cell turgor and, thereby, increased the leaf area. Thus, radiation absorption is expanded to positively 
boost biomass accumulation during the warmest seasons (Mortensen, 2014). 

Finally, the response of oregano plants to water deficit is similar to the responses of other plants 
belonging to Lamiaceae family; thus, one can infer that oregano plants produce significant biomass when they 
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are exposed to irrigation deficit, at soil water matric potential ranging from -60 kPa to -95 kPa in the pre-
flowering stage, for irrigation management purposes. 

 
Essential oil production 

According to Penka (1978), the essential oil formation and accumulation in seasoning, hallucinogenic, 
medicinal and aromatic plants depends on two variables, one of them is the water content in the soil. The 
author pointed out that the lower the water content in the soil, the lower the essential oil biosynthesis by 
plants. However, irrigation tends to induce essential oil content and yield biosynthesis increase in plants, as 
long as it is combined with other factors such as the phenological water-stress period. 

According to Hussein et al. (2014), seasoning plants subjected to water limitation show increased 

carbohydrate production due to source-sink relation adjustments in the plant, which leads to decreased 
essential oil production. Seasoning plants facing water limitation conditions overall adjust their source-sink 
relations so that the leaf mesophyll becomes the main sink, and the trichome, the supporting one. 
Consequently, the essential oil biosynthesis is reduced and biomass accumulation is favored by it (Burmeister 
and Guttenberg, 1960; Sangwan et al. 2001). 

Plants subjected to water limitation in the pre-flowering stage presented the highest mean biomass 
production rather than the highest essential oil production in the present study. Therefore, assumingly, plants 
respond to water limitation during the oil biosynthesis phenological stage by assuring biomass accumulation 
through water limitation as a way to keep the photosynthesis process running. 

It is worth emphasizing that plants grown under matric potential lower than -90 kPa in the pre-
flowering stage showed mean essential oil content and yield higher than plants grown under water limitation 
in the vegetative stage. According to Abdelmajeed et al. (2013) and Kofidis et al. (2003), the essential oil 

biosynthesis is not qualitatively and/or quantitatively constant; however, it helps plants to endure 
environmental limitations since the emission of glandular hair in the leaves during the pre-flowering stage 
helps reducing plant transpiration. 

Hassan et al. (2013) assessed the deficit irrigation effects on protected rosemary cultivation in Taif 

,Saudi Arabia and found that the plants, whose irrigation was managed at 60% field capacity, showed the 
highest mean essential oil content. They also discovered that water limitation leads to morphological 
adaptations developed to assure the plant’s survival in the environment. The glandular hair increases in the 
leaves - which decreases transpiration and favors essential oil accumulation in the shoots - stands out among 
other adaptation factors. 

Rioba et al. (2015) investigated the agronomic performance of sage (Salvia officinalis L.) by using 

different irrigation frequencies in Njoro, Kenya and found that plants irrigated every two weeks showed the 
highest mean essential oil contents. They also inferred that arid climate conditions influence essential oil 
synthesis by plants, because plants grown under higher irrigation frequency presented the highest essential oil 
content and yield. 

Azizi et al. (2009) studied the water restriction effects on oregano plants grown in Rauischholzhausen 

,Germany and found that the highest mean essential oil content and yield was shown by plants subjected to 
water limitation. Their results were similar to those found in the present study in plants subjected to matric 
potential higher than -90 kPa throughout the cultivation cycle. 

The present results did not corroborate the study by Manukyan (2011), who assessed the essential oil 
yield of lemongrass plants in Munich. Germany and found that the highest mean essential oil content was 
recorded for treatments based on higher water limitation. However, he infers that the water retention 
capacity of the soil may or not attenuate the water deficit effects, and that such variable should be taken into 
consideration in future studies about water deficit effects on seasoning plants. 

According to Abdelmajeed et al. (2013) and Figueiredo et al. (2008), variables such as essential oil 

content and yield depend on the cultivation environment the seasoning plant is subjected to. As previously 
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mentioned, oregano plants achieve morphological adjustments in their organography based on the abiotic 
stress (Sangwan et al., 2011) and on the season (Kofidis et al., 2003). 

Chang et al. (2005) reported that the essential oil yield by Lamiaceae plants is higher when the plant is 

grown under temperatures higher than 25 °C, which correspond to the warmest seasons. The plants in the 
present study showed essential oil yield under minimum and maximum temperatures between 13.1 °C and 
51.7 °C, and mean relative humidity between 48.4% and 84.3%.  

Kofidis et al. (2003) found that oregano plants grown in the spring/summer season showed larger 

glandular hair amounts in their leaves. Assumingly, these structures minimize transpiration and improve oil 
accumulation in the leaves. The authors emphasized that the oregano essential oil accumulated in the leaves’ 
ventral and dorsal surfaces during the warmest seasons, as well as that all the plants in the experiment 
conducted during these seasons showed mean content and yield higher than plants grown in the fall/winter 
season, due to the glandular trichome densification caused by the biomass reduction resulting from water 
limitation. 

Baker and Putievsky (1978) assessed the performance of oregano plants cultivated in the four seasons 
of the year (in Israel) and, after years of observation, found that the highest essential oil content was shown by 
cultures held in the spring/summer season. The authors have also pointed out that high temperatures help 
oregano essential oil biosynthesis. Similar results were found by Trivino and Johnson (2000) in a study 
conducted in Greece. They found that the meteorological conditions in spring and summer fully meet the 
oregano cultivation demands and inferred that oregano is a long-day plant. 

Tibaldi et al. (2011) analyzed the oregano plant responses to abiotic stress in Carmagnola, Eastern 

Italy and found that plants grown in days of longer photoperiod show the highest essential oil yield. Circella 
et al. (1995) assessed the photoperiod effects on oregano essential oil biosynthesis and composition and found 

the highest essential oil contents in plants grown under photoperiods longer than 13 hours. 
The results reported for the Northern hemisphere, as well as in the current study, allow assuming that 

oregano plants behave as long-day plants in the Southern hemisphere. However, it is necessary conducting 
further studies to quantify the thermal needs of oregano plants and better understand their seasonal 
productive performance, since the present study showed that water restriction in the soil throughout oregano 
plants’ phenological cycle favors essential oil biosynthesis. 
 

 
Conclusions 

 
The present study shows that water restriction in the soil throughout oregano plants’ phenological 

cycle favors essential oil biosynthesis, whereas, in the pre-flowering stage, it enables higher oregano dry and 
fresh biomass production. The matric potential (-60.8 kPa) adopted in the irrigation handling throughout 
the oregano cultivation cycle resulted in the highest mean essential oil content and yield. The matric potential  
(-60.8 kPa) adopted in the irrigation handling during the oregano pre-flowering stage resulted in the highest 
mean fresh biomass. The matric potential (-91.2 kPa) adopted in the irrigation handling during the oregano 
pre-flowering stage resulted in the highest mean dry biomass. 
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